MHC14S03

3dB 90° Directional Coupler

Applications

- 1, Low Insertion Loss For Power Combining
- 2, Doherty Power Amplifier
- 3. Small Cell & Pico
- 4. GNSS Antenna

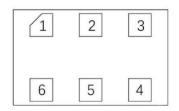
Features

- 1, Low Insertion Loss
- 2, High Isolation, 20 dB typ.
- 3, Excellent high-power capacity up to 5W
- 4, RoHS compliance (Pb-Free)

Description

The MHC14S03 is a low cost, high performance 3 dB hybrid coupler in an easy to use surface mount package. The MHC14S03 is ideal for doherty power amplifier, circular polarized antenna and other applications where low insertion loss and tight amplitude and phase balance are required. MHC14S03 is constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability. All components are 100% RF tested.

Characteristics


Table 1. MHC14S03 Characteristics

Item	Min.	Туре	Max.	Unit
Frequency Range	1150		1650	MHz
Isolation	18	20		dB
Insertion Loss		0.35	0.5	dB
Phase Unbalance	-5		+5	degrees
Amplitude	-0.5		+0.5	dB
Return Loss	18	20		dB
Operating Temp.	-40		+105	°C
Power			5	W

All the above data are based on specified demo board and tested in 25° environment.

Port Configuration

Figure 1. MHC14S03 (Bottom View)

MHC14S03

3dB 90° Directional Coupler

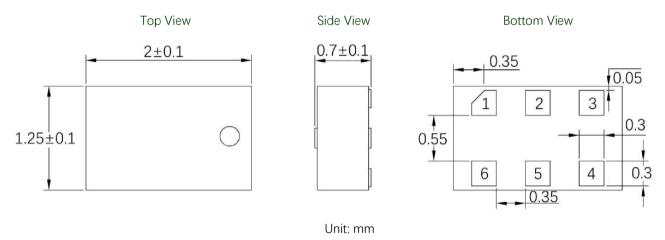
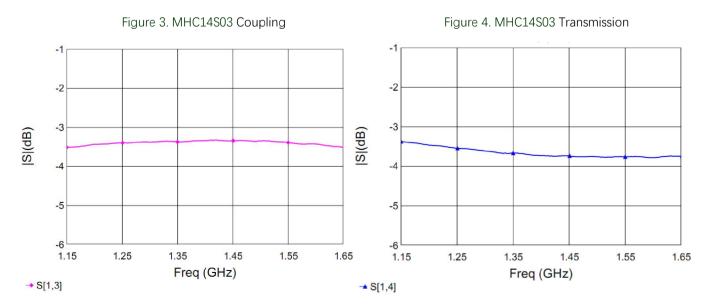
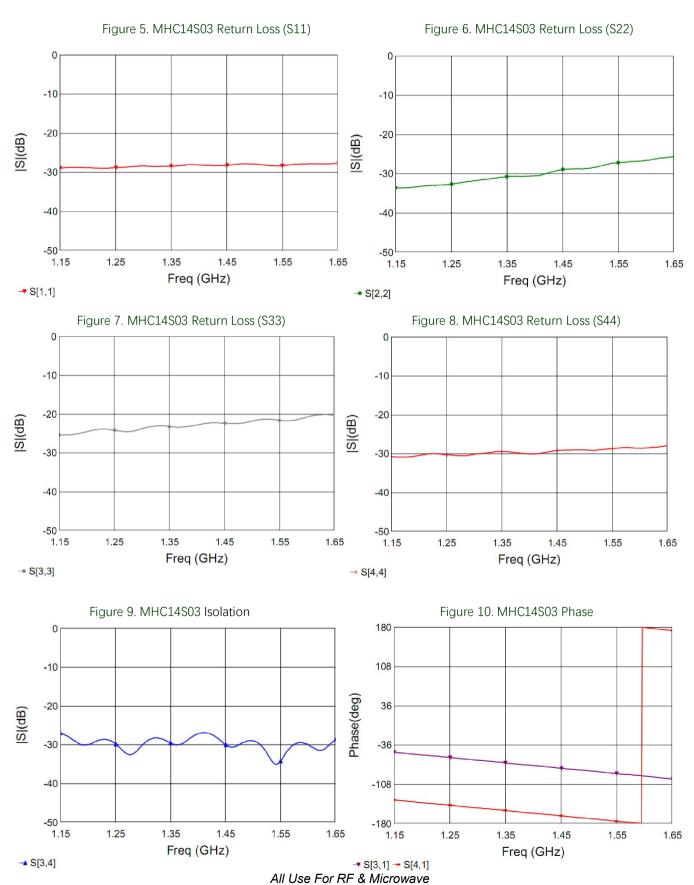

The MHC14S03 port configurations depending on how input signals are split. The Case 1, Case 2, Case 3, and Case 4, configurations mean that one input signal is split into two output signals. When port 1 is defined, the other ports are defined automatically

Table 2. MHC14S03 Port Configurations


Configuration	Port 1	Port 3	Port 4	Port 6
Case1.	Input	Isolated	Direct -3dB, -90°	Coupling -3dB, 0°
Case2.	Isolated	Input	Coupling -3dB, 0°	Direct -3dB, -90°
Case3.	Direct -3dB, -90°	Coupling -3dB, 0°	Input	Isolated
Case4.	Coupling -3dB, 0°	Direct -3dB, -90°	Isolated	Input

Outline Drawing


Figure 2. MHC14S03 Outline Drawing

Typical Performance (25°C, 1150-1650 MHz)

Shenzhen Megsine technology co., ltd www.megsine.com sales@megsine.com may contain us for future information May. 09, 2023

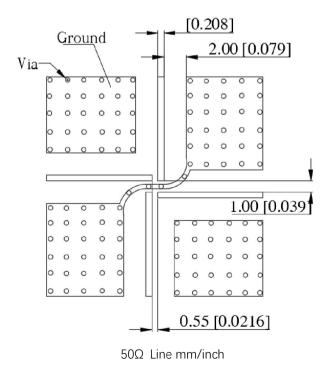
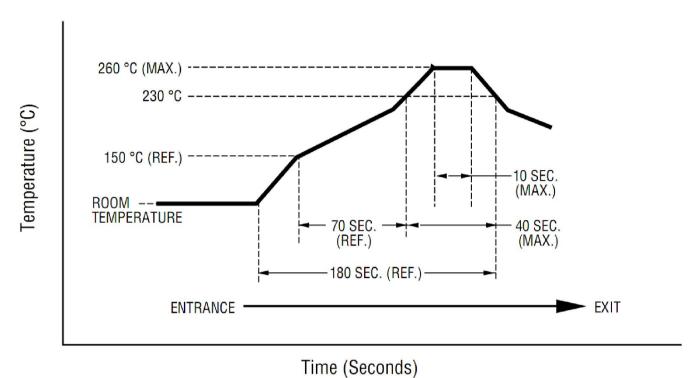

Definition of Measured Specifications

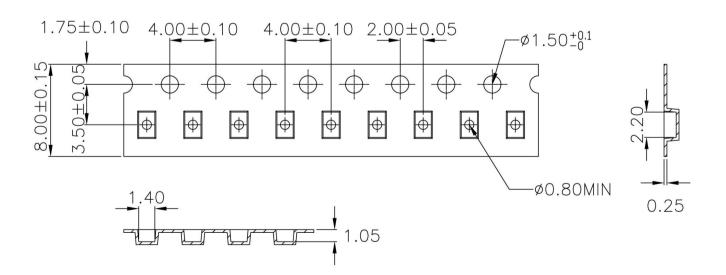
Table 3. Mathematical Formula for the MHC14S03 Parameters

Parameter	Definition	Mathematical Representation	
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50W system. A VSWR of 1:1 is optimal.	$VSWR = \frac{v_{max}}{v_{min}}$ $Vmax = voltage \ maxima \ of \ a \ standing \ wave$ $Vmin = voltage \ minima \ of \ a \ standing \ wave$	
Return Loss	The impedance match of the coupler to a 50W system. Return Loss is an alternate means to express VSWR.	Return Loss (dB)= 20log ^{VSWR+1} _{VSWR-1}	
Insertion Loss	The input power divided by the sum of the power at the two output ports.	Insertion Loss(dB)= $10\log \frac{P_{in}}{p_{cp1+P_{transmission}}}$	
Isolation	The input power divided by the power at the isolated port.	Isolation(dB)= $10log \frac{P_{in}}{p_{iso}}$	
Phase Balance	The difference in phase angle between the two output ports.	Phase at coupled port – Phase at transmisson port	
Amplitude Balance	The power at each output divided by the average power of the two outputs.	$10log\frac{P_{cp1}}{\frac{P_{cp1}+p_{transmission}}{2}} \text{ and } 10log\frac{p_{transmission}}{\frac{P_{cp1}+p_{transmission}}{2}}$	

Recommended PCB Layout


Figure 11. Recommended PCB Layout

Reflow Profile


Figure 12. MHC14S03 Thermal Reflow Profile

11110 (00001101

Packaging and Ordering Information

Figure 13. MHC14S03 Packaging Information

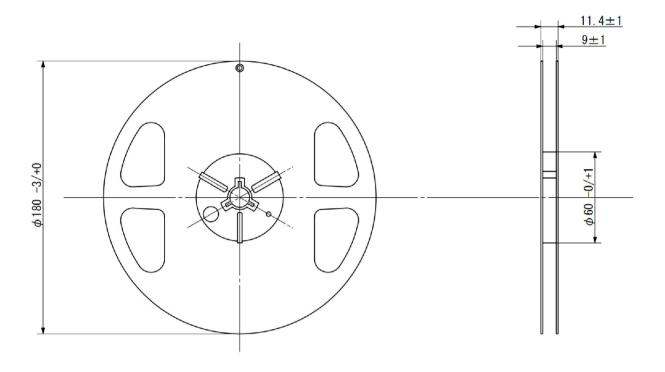


Table 4. MHC14S03 Ordering Information

Device	Package	Reel	Shipping
MHC14S03	2.0*1.25mm	7"	4000 Reel

Revison	Description	Date
Rev0	Preliminary	2024/2/26