

### 0.1-6GHz DPDT Antenna Cross Switch

### **Features**

- Broadband frequency range: 0.1 to 6.0GHz
- Wide VDD range: 1.65V to 3.3V
- GPIO interface for 1.0V to VDD positive control voltage
- Low insertion loss: 0.35dB typical @ 2.7GHz
- Max input RF power of 39dBm
- Excellent linearity and harmonic performance
- No DC blocking capacitors in typical application
- Small FCLGA (1.1mm x 1.5mm x 0.47 mm -10L) package

## **Applications**

- Cellular 2G/3G/4G/5G TRX
- Antenna switching
- Other RF front-end modules

### **General Description**

The AW12022FLR is a Silicon-On-Insulator(SOI) DPDT switch with low insertion loss and high Isolation. It can be used to support band switching and mode switching for cellular 4G/5G, data cards and tablets.

The symmetrical design of internal ports makes it convenient for PCB routing and adjustment of receiving and transmitting signals. The band/mode switching is realized by the GPIO pin as referenced in the chip block diagram and the control logic. The chip allows power-supply voltages from 1.65V to 3.3V and the positive control voltages from 1V to VDD.

The AW12022FLR is provided in a compact FCLGA 1.1mm x 1.5mm x 0.47mm -10L package.

# **Typical Application Circuit**

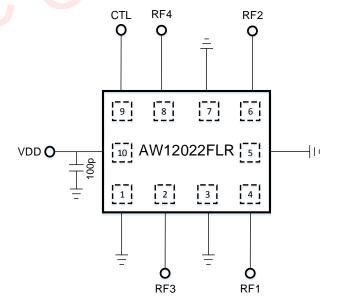



Figure 1 Typical Application Circuit Of AW12022FLR

All trademarks are the property of their respective owners.



## **Pin Configuration And Top Mark**

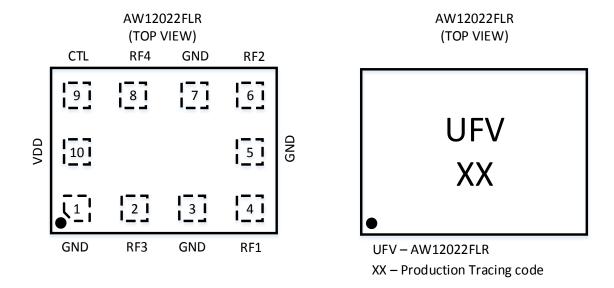
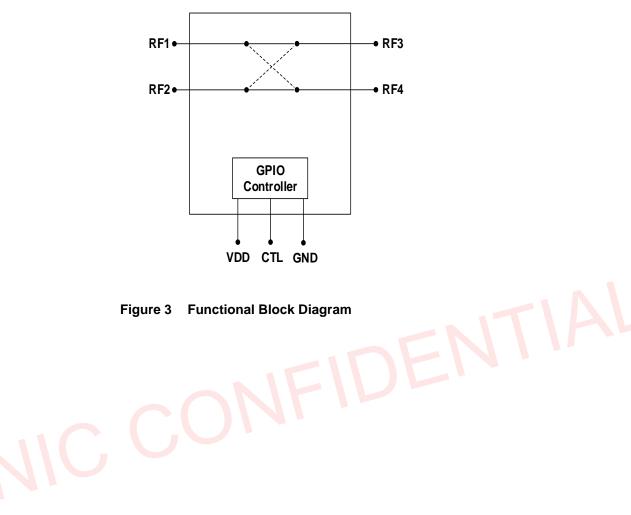




Figure 2 Pin Configuration And Top Mark

## **Pin Definition**

| Figure 2 Pin Configuration And Top Mark  Pin Definition |      |                    |  |  |  |  |  |
|---------------------------------------------------------|------|--------------------|--|--|--|--|--|
| No.                                                     | NAME | DESCRIPTION        |  |  |  |  |  |
| 1                                                       | GND  | Ground             |  |  |  |  |  |
| 2                                                       | RF3  | RF I/O path 3      |  |  |  |  |  |
| 3                                                       | GND  | Ground             |  |  |  |  |  |
| 4                                                       | RF1  | RF I/O path 1      |  |  |  |  |  |
| 5                                                       | GND  | Ground             |  |  |  |  |  |
| 6                                                       | RF2  | RF I/O path 2      |  |  |  |  |  |
| 7                                                       | GND  | Ground             |  |  |  |  |  |
| 8                                                       | RF4  | RF I/O path 4      |  |  |  |  |  |
| 9                                                       | CTL  | DC control voltage |  |  |  |  |  |
| 10                                                      | VDD  | DC power supply    |  |  |  |  |  |

## **Functional Block Diagram**



# **Ordering Information**

| Part Number | Temperature | Package                                  | Marking | Moisture<br>Sensitivity<br>Level | Environmental<br>Information | Delivery Form                |
|-------------|-------------|------------------------------------------|---------|----------------------------------|------------------------------|------------------------------|
| AW12022FLR  | -40°C∼85°C  | FCLGA<br>1.1mm x 1.5mm x<br>0.47 mm -10L | UFV     | MSL3                             | ROHS+HF                      | 3000 units/<br>Tape and Reel |



# **Absolute Maximum Ratings**(NOTE1)

| PARAMETER                  | RANGE                                |  |  |  |
|----------------------------|--------------------------------------|--|--|--|
| Supply Voltage Ran         | Supply Voltage Range VDD             |  |  |  |
| Control Voltage Range      | Control Voltage Range CTL            |  |  |  |
| RF input power             | 39.3dBm                              |  |  |  |
| Operating Free-air Tempe   | Operating Free-air Temperature Range |  |  |  |
| Storage Temperatur         | -65°C to 150°C                       |  |  |  |
| Lead Temperature (Solderin | 260°C                                |  |  |  |
|                            |                                      |  |  |  |
| HBM (ESDA/JEDEC            | ±1000V                               |  |  |  |
| CDM (ESDA/JEDEC            | ±500V                                |  |  |  |

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a 1.5kΩ resistor into each pin. Test method: ESDA/JEDEC JS-001



### **Electrical Characteristics**

VDD=1.8V, CTL=0/1.8V, PIN=0dBm,  $T_A$  =+25°C,  $Z_0$ =50 $\Omega$ . (unless otherwise noted)

|                    | PARAMETER                                   | TEST CONDITION                                                                             | MIN | TYP                                          | MAX | UNIT                       |  |  |  |
|--------------------|---------------------------------------------|--------------------------------------------------------------------------------------------|-----|----------------------------------------------|-----|----------------------------|--|--|--|
| DC Specifications  |                                             |                                                                                            |     |                                              |     |                            |  |  |  |
| VDD                | Supply Voltage                              |                                                                                            |     | 1.8                                          |     | V                          |  |  |  |
| IDD                | Supply Current                              | VDD=1.8V                                                                                   |     | 45                                           |     | μΑ                         |  |  |  |
| IDD                | Supply Current                              | VDD=2.8V                                                                                   |     | 85                                           |     | μΑ                         |  |  |  |
| VCTL_H<br>VCTL_L   | Control Voltage<br>High<br>Low              |                                                                                            |     | 1.8<br>0                                     |     | V                          |  |  |  |
| ICTL               | Control Current                             | VCTL = 1.8V                                                                                |     | 0.1                                          |     | μΑ                         |  |  |  |
| ton                | Turn-on Switching Time                      | 50% of final control<br>voltage to 90% of final<br>RF power                                |     | 2                                            |     | μs                         |  |  |  |
| RF Specif          | ications                                    |                                                                                            |     |                                              |     |                            |  |  |  |
| IL                 | Insertion loss                              | 699-960MHz<br>1710-2200MHz<br>2300-2690MHz<br>3300-4200MHz<br>4400-5000MHz<br>5150-5925MHz |     | 0.27<br>0.31<br>0.35<br>0.41<br>0.49<br>0.57 | N   | dB<br>dB<br>dB<br>dB<br>dB |  |  |  |
| ISO                | Isolation                                   | 699-960MHz<br>1710-2200MHz<br>2300-2690MHz<br>3300-4200MHz<br>4400-5000MHz<br>5150-5925MHz |     | 33<br>25<br>22<br>20<br>18<br>17             |     | dB<br>dB<br>dB<br>dB<br>dB |  |  |  |
| VSWR               | Voltage Standing Wave Ratio                 | 699-960MHz<br>1710-2200MHz<br>2300-2690MHz<br>3300-4200MHz<br>4400-5000MHz<br>5150-5925MHz |     | 1.06<br>1.1<br>1.1<br>1.2<br>1.2<br>1.3      |     | :1<br>:1<br>:1<br>:1<br>:1 |  |  |  |
| H2                 | Second Harmonics                            | 35dBm, GSM LB, CW                                                                          |     | -72                                          |     | dBm                        |  |  |  |
| H2                 | Second Harmonics                            | 33dBm, GSM HB, CW                                                                          |     | -70                                          |     | dBm                        |  |  |  |
| НЗ                 | Third Harmonics                             | 35dBm, GSM LB, CW                                                                          |     | -58                                          |     | dBm                        |  |  |  |
| НЗ                 | Third Harmonics                             | 33dBm, GSM HB, CW                                                                          |     | -61                                          |     | dBm                        |  |  |  |
| P <sub>0.1dB</sub> | 0.1dB Compression Point                     | 0.1GHz–6GHz                                                                                |     | 39                                           |     | dBm                        |  |  |  |
| IIP3               | 3 <sup>rd</sup> Order Input Intercept Point | F1=2535MHz, 20dBm<br>F2=2415MHz, -15dBm<br>F0=2655MHz                                      |     | 81                                           |     | dBm                        |  |  |  |



### **Timing Diagram (Power ON And OFF Sequence)**

It is very important that the user adheres to the correct power-on/off sequence in order to avoid damaging the device. The control signal CTL should be set to 0V unless VDD is set in the operating voltage range.

### Power ON:

- 1) Apply voltage supply --- VDD
- 2) Set Controls---CTL
- 3) Apply RF input

Change switch position from one RF port to another:

- 1) Remove RF input
- 2) Change control voltages CTL to set the switch to desired RF port
- 3) Apply RF input

#### Power OFF:

- 1) Remove RF input
- 2) Remove control voltages-CTL
- 3) Remove VDD input

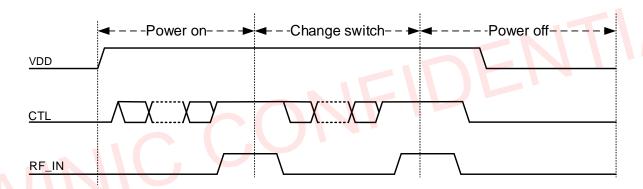
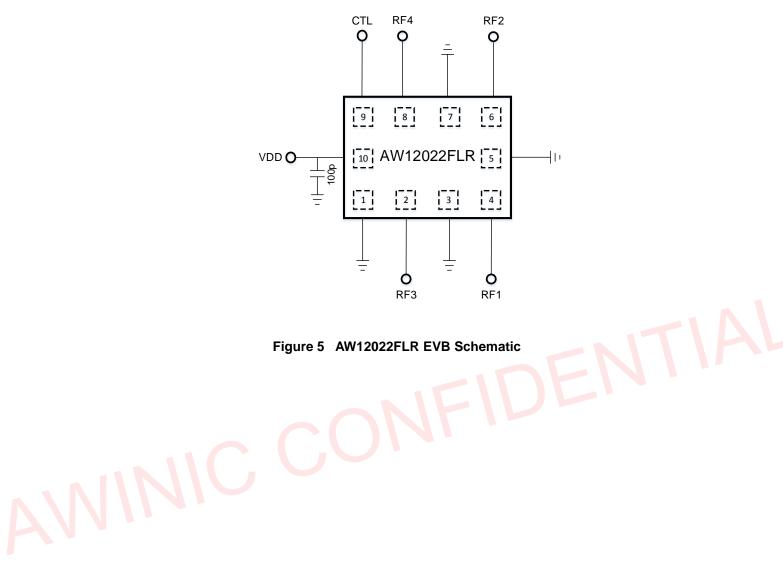
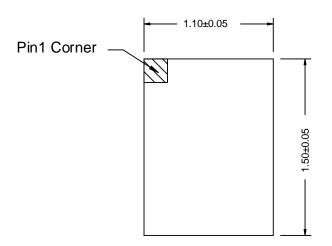




Figure 4 Power On/Change Switch/Power Off Sequence

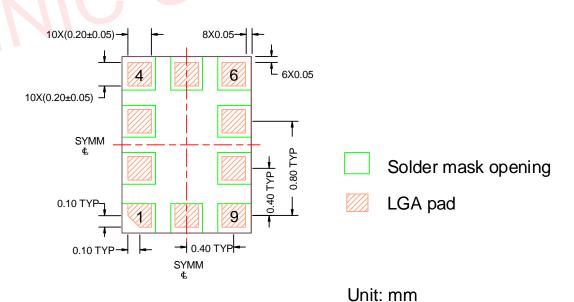
## **AW12022FLR Control Logic**


| State | Active Path            | CTL |
|-------|------------------------|-----|
| 1     | RF1 to RF4; RF2 to RF3 | 1   |
| 0     | RF2 to RF4; RF1 to RF3 | 0   |

## **Application Circuits**



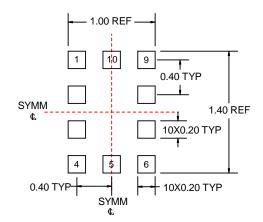



# **Package Outline Dimensions**



**TOP VIEW** 

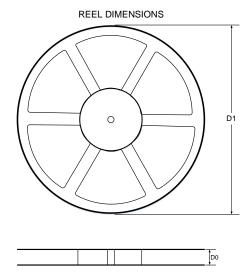


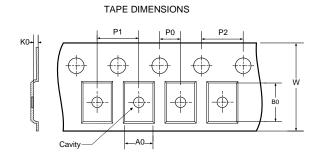

# SIDE VIEW



**BOTTOM VIEW** 

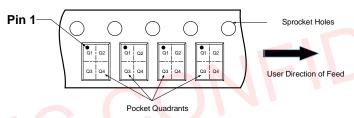



### **Land Pattern Data**






Unit: mm


# **Tape And Reel Information**





- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



### DIMENSIONS AND PIN1 ORIENTATION

| D1    | D0   | A0   | B0   | K0   | P0   | P1   | P2   | W    | Pin1 Quadrant |  |
|-------|------|------|------|------|------|------|------|------|---------------|--|
| (m m) | (mm) |               |  |
| 180   | 9.5  | 1.3  | 1.7  | 0.6  | 2    | 4    | 4    | 8    | Q1            |  |

All dimensions are nominal



## **Revision History**

| Version | Date      | Change Record                     |
|---------|-----------|-----------------------------------|
| V0.9    | May 2020  | Officially Released               |
| V1.0    | Jul. 2020 | Update electrical characteristics |
| V1.1    | Jul. 2020 | Update electrical characteristics |
|         |           |                                   |
|         |           |                                   |
|         |           |                                   |





### **Disclaimer**

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices.

AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.