

Low-Power rail-to-rail Operational Amplifier

Description

LMV358 (dual channel) is a rail-to-rail input, output voltage feedback, low power consumption operational amplifier. It has wide input common mode voltage and output swing. The minimum working voltage can be up to 2.1V, and the maximum working voltage is recommended to be 5.5V. Used as power amplifier in all kinds of pocket or portable stereo radio recorders.

LMV358 has the following characteristics:Can provide 1MHz gain bandwidth product. It has an extremely low input bias current (about 10pA level) and can be used for integration, photo diode amplifiers and piezoelectric sensors. The Rail to Rail input and output buffers are also used for specific IC designs in single power systems. Applications of this series of amplifiers include safety monitoring, portable devices, batteries and power supplies, supply control, signal processing and interfaces in low power sensor systems.

- Low power dissipation
- Rail to rail input and output, typical 0.8mv Vos
- Stable unit gain
- Gain bandwidth product 1.1MHz
- Low input bias current: 10pA Level, <1nA
- Low Power consumption
- 2.1V ~ 5.5V working voltage
- Low operating current: 45uA each channel

Pin Function

Pin No.	Symbol	Function	Pin No.	Symbol	Function	
		The custom of the first			The non-inverting intput of	
1	OUT1	The output of the first operational amplifier	5	IN2+	the second operational	
					amplifier	
2	IN14	The inverting intput of the	6	IN2-	The inverting intput of the	
2	IN1-	first operational amplifier	0		second operational amplifier	
3	IN1+	The non-inverting intput of	7	OUT2	The output of the second	
3	IIN I T	the first operational amplifier			operational amplifier	
4	-Vs	Negative power input	8 +Vs		Positive power input	

Pin Assignment

OUT1 🖃	•	+V _s
IN1- N		□□OUT2
IN1+ 😡		IN2-
-V _S 🔼		回 IN2+

Absolute Maximum Ratings (at T_A = 25°C) Note1

Parameter	Symbol	Value	Unit
Supply Voltage(+V _S →-V _S)	Vcc	7.5	V
Common-mode Input Voltage	V _{ICR}	-V _S -0.5~+V _S +0.5	V
Junction Temperature	TJ	150	°C
Operating Temperature Range	T _{OPR}	-40~85	°C
Storage Temperature Range	T _{STG}	-50~150	°C
Lead Temperature (Soldering, 10 sec)	TL	260	°C

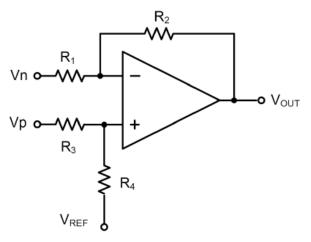
Note1: Exceeding the above limits may damage to the chip. The reliability of the device will also be affected if the device works under the limit conditions. Electrostatic discharge can also cause damage to chips, so it is suggested to take some preventive measures for integrated circuits. Failure to follow proper handling and installation can also cause damage. Precision LMV358 and other devices are more vulnerable to damage than ordinary devices in the case of tiny electrostatic, and small parameter changes may make the whole circuit performance substandard.

Rev.P1.00 Date:2020/03/01 www.dowosemi.cn 2 / 7

Electrical Characteristics

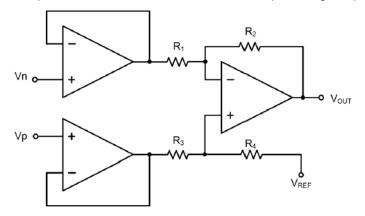
 R_L =100K Ω Connected to $V_S/2$ and V_{OUT} =V $_S/2$, T_A =25 $^{\circ}C$, unless otherwise noted

Dovementor	Cymphal	Symbol Conditions	Value			I I m i 4
Parameter	Symbol		Min.	Тур.	Max.	Unit
Input offset voltage	Vos			±0.8	±5	mV
Input offset current	los			10		pA
Low input bias current	I _B			10		pA
Common-mode input voltage rang	V _{CM}	V _S =5.5V		-0.1-5.6		V
Input offset voltage drift	△Vos/△T			2.7		μV/°C
Open-loop gain	Aol	V _O =0.1V~4.9 V, R _L =5 kΩ	70	80		dB
		V _O =0.035V~4.96V, R _L =100 kΩ	80	84		dB
	CMRR	V _S =5.5,V _{CM} =0.1~4V	62	70		dB
Common mode rejection		V _S =5.5,V _{CM} =0.1~5.6V	56	68		dB
Power supply rejection	PSRR	V _S =2.5V~5.5V,V _{CM} =(-V _S)+0.5V	60	80		dB
Working voltage range	Vw		2.1		5.5	V
Quiescent current	lα	Іоит=0		45	75	μA
Gain bandwidth product	GBP	C _L =100pF		1.1		MHz
Slew rate	SR	G=1, 2V Output Step		0.5		V/µs
Equivalent input noise Voltage	en	f=1KHz		27		nV∜Hz
		f=10KHz		20		
Output current	l _{out}		18	30		mA
0.44	V _{OH}	R _L =100KΩ		0.008		V
Output voltage swing	V _{OL}	R _L =10KΩ		0.08		V

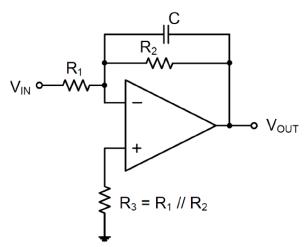


Typical Application Circuit

1.differential amplifier

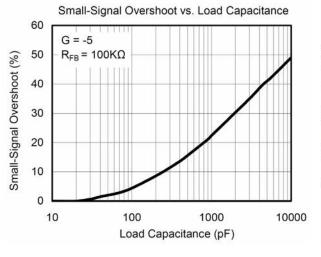

As shown in the figure, if the resistance is equal, (R4 / R3 = R2 / R1), then the output VOUT = (Vp - Vn) \times

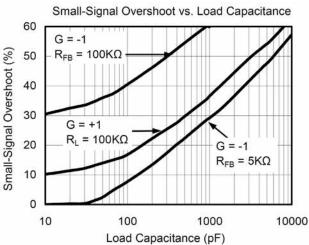
R2 / R1 + VREF


2.instrumentation amplifier

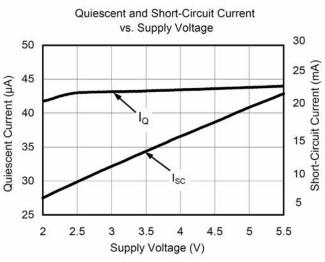
The circuit in the figure above performs the same function, but the input is high impedance.

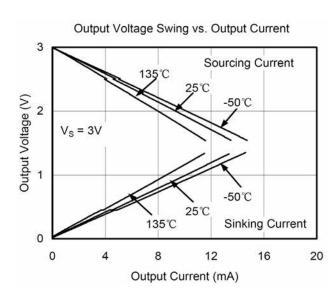
3.Low pass active filtering

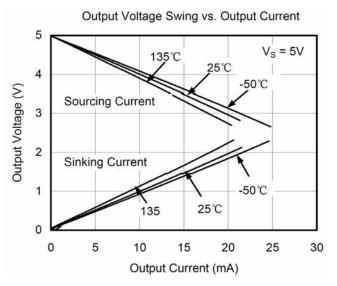

The low-pass filter circuit shown here has a (-R2 / R1) DC gain and -3db at a frequency of 1/2 $\,\pi$ R2C corner. Make sure the filter is within the amplifier's bandwidth. Large feedback resistors are easily accompanied by parasitic capacitance at high speed, resulting in adverse effects such as oscillation. Keep the resistance value as low as possible and consider the appropriate output load.

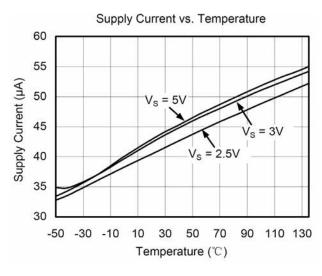


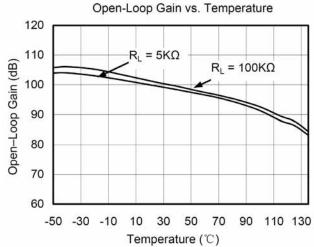

Rev.P1.00 Date:2020/03/01 www.dowosemi.cn 4 / 7

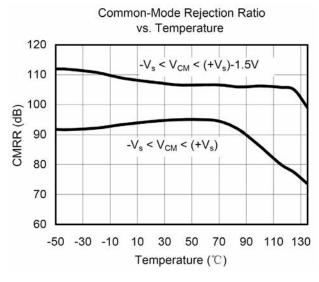


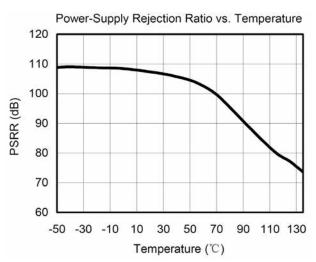

Typical characteristic curve

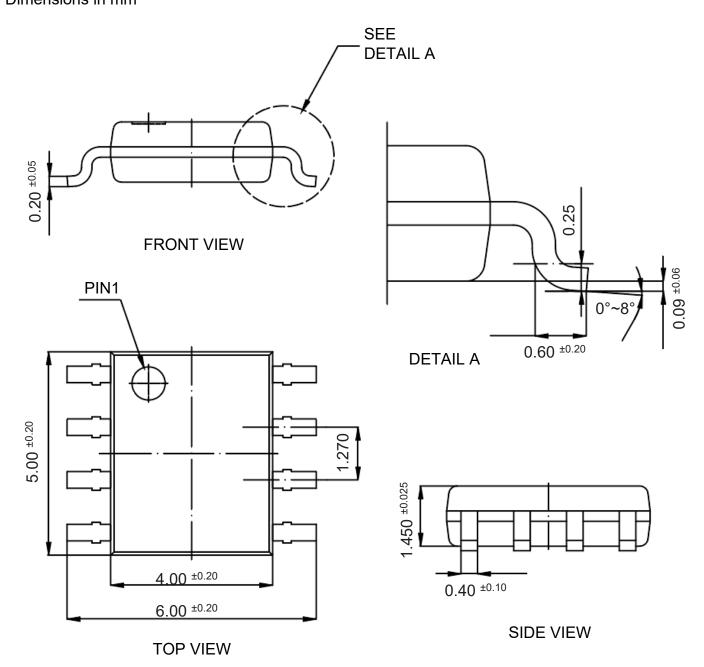












Package Outline

SOP-8 Dimensions in mm

Ordering Information

Device	Package	Shipping
LMV358	SOP-8	4,000PCS/Reel&13inches

Rev.P1.00 Date:2020/03/01 www.dowosemi.cn 7 / 7