

E22-xxxT22D User Manual

AT Command 22dBm LoRa Wireless Module

Contents

1 Product Overview	
1.1 Product introduction	
1.2 Features	
1.3 Application	5
2 Specification and parameter	6
2.1 RF parameter	6
2.2 Electrical parameters	6
2.3 Hardware parameters	7
3 Mechanical dimensions and pin definitions	8
3.1 E22-230/400/900T22D mechanical dimensions and pin definitions	8
4 Recommended connection diagram	g
5 Function description	10
5.1 Fixed- point transmission	10
5.2 Broadcast transmission	10
5.3 Broadcast address	10
5.4 Listening address	11
5.5 Module reset	11
5.6 Detailed explanation of AUX	11
5.6.1 Serial port data output indication	11
5.6.2 Wireless transmission instructions	12
5.6.3 The module is in the process of configuration	12
5.6.4 Precautions	12
6 Operating mode	13
6.1 Precautions for mode switching	13
6.2 Normal mode (mode 0)	14
6.3 WOR mode (mode 1)	14
6.4 Configuration mode (mode 2)	14
6.5 Deep sleep mode (mode 3)	15
7 Register read and write control	15
7.1 Instruction format	15
7.2 E22-400/900T22D register description	16
7.3 E22-230T22D register description	19
7.4 Factory default parameters	21
8 AT commands	22
8.1AT command list	22
8.2 AT parameter analysis	24
8.3Things to note when upgrading firmware via serial port	25
9 Relay networking mode use	25
10 Host computer configuration instructions	26
11 Hardware design	27
12 FAQ	28
12.1Transmission distance is not ideal	28
12.2 Modules are easily damaged	29

12.3The bit error rate is too high	29
13 Welding operation guidance	29
13.1Reflow soldering temperature	
13.2 Reflow soldering curve	30
14 Related models	30
15 Antenna Guide	31
15.1 Antenna recommendations	31
16 Batch packaging methods	32
16.1 E22-230/400/900T22S batch packaging method	32
Revise history	32
About us	33

1 Product Overview

1.1 Product introduction

E22-xxxT22D is a new generation of LoRa wireless data transmission modules. It is developed based on SEMTECH high-performance RF chips, with a transmission power of 22dBm and multiple transmission modes. The operating frequency bands are in the 230, 400, and 900mhz, respectively. LoRa spreading technology, TTL level output, and compatibility with 3.3V IO port voltage.

E22-xxxT22D adopts the new generation LoRa spreading technology, which is faster, lower power consumption, and smaller in size; Supports functions such as WOR, wireless configuration, carrier monitoring, automatic relay, communication keys, etc., supports packet length settings, and can provide customized development services. The three modules in the figure have the same power but different frequency bands.

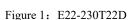


Figure 2: E22-400T22D

Figure 3: E22-900T22D

1.2 Features

- Adopting the new generation LoRa spread spectrum modulation technology, it brings longer communication distance and stronger anti-interference ability;
- Support serial port firmware upgrade, making firmware updates more convenient;
- Support AT commands for more convenient use;
- Support automatic relay networking, multi-level relay is suitable for ultra long distance communication, and multiple networks operate simultaneously in the same area;
- Support users to set their own communication keys that cannot be read, greatly improving the confidentiality of user data;
- Support LBT function, monitor channel environment noise before sending, which can greatly improve the communication success rate of the module in harsh environments;
- Support RSSI signal strength indication function for evaluating signal quality, improving communication network, and ranging:
- Support wireless parameter configuration, send command data packets wirelessly, and remotely configure or read wireless module parameters;
- Support WOR, which is an ultra-low power consumption function suitable for battery powered application solutions;
- Support fixed-point transmission, broadcast transmission, and channel monitoring;
- Support deep sleep mode, in which the overall power consumption is about 3uA;
- Under ideal conditions, the communication distance can reach 5km;
- Save the parameters after power failure, and after re powering on, the module will operate according to the set parameters;
- Efficient watchdog design, once an exception occurs, the module will automatically restart and continue to work according
 to the previous parameter settings;

- E22-400T22D and E22-900T22D support data transfer rates of 2.4K to 62.5Kbps;
- E22-230T22D supports data transmission rates of 2.4K to 15.6Kbps;
- Support power supply of 2.7-5.5V, ensuring optimal performance for power supply greater than 5V;
- Industrial grade standard design, supporting long-term use at -40~+85 °C;

1.3 Application

- Home security alarm and remote keyless entry;
- Smart homes and industrial sensors, etc;
- Wireless alarm security system;
- Building automation solutions;
- Wireless industrial grade remote control;
- Healthcare products;
- Advanced Meter Reading Architecture (AMI);
- Application in the automotive industry.

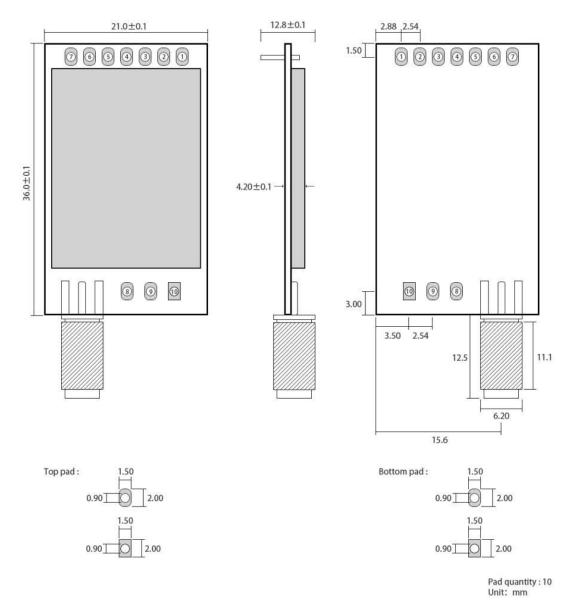
2 Specification and parameter

2.1 RF parameter

			Model NO.		
RF parameter	Unit	E22-230T22DV2.	E22-400T22DV2.2	E2 2-900T 22DV2.2	Remarks
Max TX power	dBm	22.0± 1	22.0± 1	22.0± 1	-
Receiving sensitivity	dBm	- 138	- 147	- 147	Air data rate is 2.4 kbps
Tested distance	M	5K	5K	5K	In clear and open area, the antenna gain is 5dBi with height of 2.5 m, and the air rate is 2.4 kbps.
Operating frequency	MHz	220.125~ 236.125MHz	410.125~ 493.125MHz	850.125~ 930.125MHz	for ISM band
Air data rate	bps	2.4K~15.6K	2.4K~62.5K	2.4K~62.5K	User Programmed Control
Block power	dBm	10	10	10	Less likely to be burned if used at close range
TX length	byte	240	240	240	Sub-package 32/64/128/240 bytes can be set to be sent via command

2.2 Electrical parameters

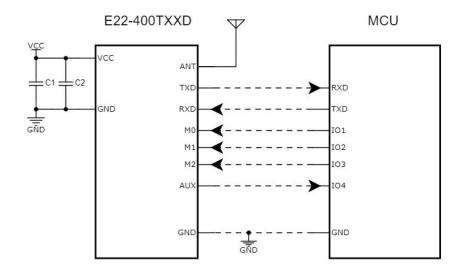
Electrical parameters				Model NO.		
		unit	E2 2-230T	E2 2-400T	E2 2-900T	Remark
Electrical	parameters	unit	22	22	22	Kemai k
			DV2.2	DV2.2	DV2.2	
						\geq 5 V can guarantee the output power ,
Operation	ng Voltage	V	2.7~5.5	2.7~5.5	2.7~5.5	exceeding 5.5 V will permanently burn the
						module .
Commun	ication level	V	3.3V	3.3V	3.3V	Using 5V TTL risks burning out
	TX current		110	110	150	Instantaneous power
Power			110			consumption@22dBm
consumption	RX current	mA	15	15	17	
	Sleep current	uA	3	3	3	Software shutdown
	Operating	°C		40		Industrial and desire
4	temperature			-40 ∼ +85		Industrial grade design
temperature	Storage	°C		-40 ∼ +85		Industrial grade design
temperature				-4 0 ~ +83		Industrial grade design


2.3 Hardware parameters

	E22-230T22D E22-400T22D E22-900T22D			
Hardware parameters			Remark	
Crystal frequency		32MHz		Industrial grade high-precision crystal oscillator
Modulation		LoRa		New generation LoRa modulation technology
Interface mode		1.27mm stamp hole		
Communicati on Interface		UART serial port		TTL level
TX length	240 Byte		Subpackage 32/64/128/240 bytes can be set to be sent via command	
Packaging method	SMD		-	
cache capacity		1000 Byte		-
Antenna interface	IPEX/stamp hole		Equivalent impedance is about 50 Ω	
size	36mm*21mm		±0.1mm	
Product Weight	2.4g		±0.05g	

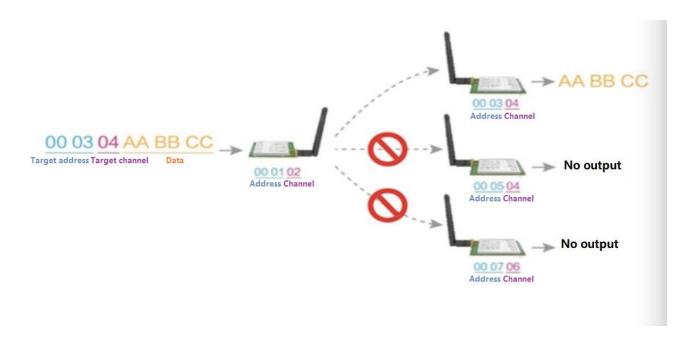
3 Mechanical dimensions and pin definitions

3.1 E22-230/400/900T22D mechanical dimensions and pin definitions



Pin number	Pin name	Pin direction	Pin usage		
1	MO	Input (very weak	Cooperate with M1 to determine the 4 working modes of the module (cannot		
I	M0	pull-up)	be left floating, can be grounded if not used)		
2.	M1	Input (very weak	Cooperate with M0 to determine the 4 working modes of the module (cannot		
2 M1		pull-up)	be left floating, can be grounded if not used)		
3	RXD	enter	TTL serial port input, connected to the external TXD output pin;		
4	TxD	output TTL serial port output, connected to the external RXD input pin;			
_	AUX	, ,	Used to indicate module working status;		
3		output	The user wakes up the external MCU and outputs low level during power-on		

			self-test initialization; (can be left floating)
6	VCC	power supply	Module power supply positive reference, voltage range: $2.3 \sim 5.5 \text{V DC}$
7	GND	power supply	Module ground wire
8	Fixing hole		Fixing hole
9	Fixing hole		Fixing hole
10	Fixing hole		Fixing hole


4 Recommended connection diagram

5 Function description

5.1 Fixed-point transmission

5.2 Broadcast transmission

5.3 Broadcast address

Example: Set the module A address to 0xFFFF and the channel to 0x04.

When module A is used as a transmitter (same mode, transparent transmission mode), all receiving modules under the 0x04 channel can receive data to achieve the purpose of broadcasting.

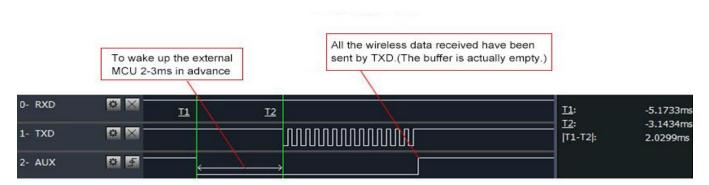
5.4 Listening address

- Example: Set the module A address to 0xFFFF and the channel to 0x04.
- When module A is used as a receiver, it can receive all data under the 0x04 channel to achieve the purpose of monitoring.

5.5 Module reset

 After the module is powered on, AUX will immediately output a low level, perform hardware self-test, and set the working mode according to user parameters;

During this process, AUX remains low level. After completion, AUX outputs high level and starts working normally according to the working mode combined by M1 and M0;

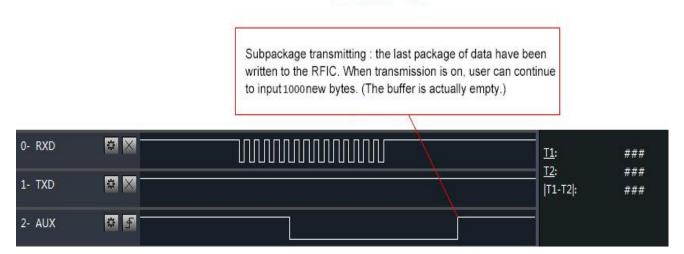

Therefore, the user needs to wait for the rising edge of AUX as the starting point for the module to work normally.

5.6 Detailed explanation of AUX

- AUX is used for wireless transceiver buffer instructions and self-test instructions.
- It indicates whether the module has data that has not been sent out through the wireless, or whether all the wireless data has been received but has not been sent out through the serial port, or the module is in the process of initializing self-test.

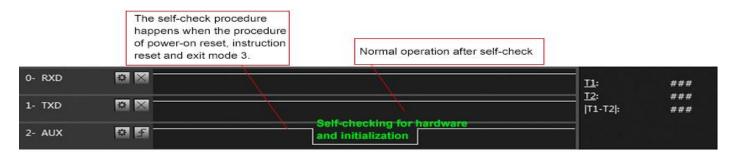
5.6.1 Serial port data output indication

Used to wake up the external MCU from sleep;


Timing Sequence Diagram of AUX when TXD pin transmits

5.6.2 Wireless transmission instructions

• The buffer is empty: the data in the internal 1000-byte buffer is written to the wireless chip (automatic sub-packetization); When AUX=1, the user continuously initiates data less than 1000 bytes without overflow;


When AUX=0, the buffer is not empty: all the data in the internal 1000-byte buffer has not yet been written to the wireless chip and the transmission has been started. At this time, the module may be waiting for user data to end and time out, or it may be transmitting wireless packets.

Timing Sequence Diagram of AUX when RXD pin receives

5.6.3 The module is in the process of configuration

• Only when resetting and exiting sleep mode;

Timing Sequence Diagram of AUX when self-check

5.6.4 Precautions

Serial numbe r	AUX considerations
1	The above functions 1 and 2 give priority to low-level output, that is, if any low-level output condition is met, AUX will
1	output low-level; When all low level conditions are not met, AUX outputs high level.
	When AUX outputs low level, it indicates that the module is busy and no working mode detection will be performed at this
2	time;
	When the module AUX outputs high level within 1ms, the mode switching work will be completed.
	After the user switches to a new working mode, the module will not actually enter this mode until at least 2ms after the
3	rising edge of AUX;
	If AUX remains high, the mode switch will take effect immediately.

4	When the user enters other modes from mode 3 (sleep mode) or during the reset process, the module will reset the user parameters, during which the AUX output is low level.
5	Due to the characteristics of the LoRa modulation method, the information transmission delay is much longer than that of FSK. For example, at an air speed of 2.4 kbps, the transmission delay of 100 bytes is about 1.5 seconds. It is recommended that customers not conduct big data at low air speeds. Mass transmission to avoid communication abnormalities caused by data loss due to data accumulation.

6 Operating mode

The module has four working modes, which are set by pins M1 and M0; details are shown in the following table:

Mode (0-3)	M1	M0	Mode introduction	Remark
0 transmission mode	0	0	Open serial port, open wireless, transparent transmission	Support special command over-the-air configuration
1 WOR mode	0	1	Can be defined as WOR sender and WOR receiver	Support air wake-up
2 configuration mode	1	0	Users can access the registers through the serial port to control the working status of the module.	
3 deep sleep	1	1	Module goes to sleep	

6.1 Precautions for mode switching

seria l num ber	Remark
1	 Users can combine M1 and M0 with high and low levels to determine the module working mode. The 2 GPIOs of the MCU can be used to control mode switching; After changing M1 and M0: If the module is idle, it can start working in the new mode after 1ms; If the module has serial port data that has not yet been transmitted wirelessly, it can enter the new working mode only after the transmission is completed; If the module receives wireless data and sends data out through the serial port, it needs to be sent before it can enter the new working mode; Therefore, mode switching can only be effective when AUX outputs 1, otherwise the switching will be delayed.
2	 For example, if the user continuously inputs a large amount of data and switches modes at the same time, the mode switching operation is invalid at this time; the module will process all user data before performing new mode detection; Therefore, the general recommendation is: detect the output status of the AUX pin and wait 2ms after outputting a high level before switching.
3	 When the module is switched from other modes to sleep mode, if there is data that has not been processed yet; The module will enter sleep mode only after processing these data (including receiving and sending). This feature can be used for fast sleep, thereby saving power consumption; for example: the transmitter module works in mode 0, the user initiates the serial port data "12345", and then does not have to wait for the AUX pin to be idle (high level), and can directly switch to sleep mode. And put the user's main MCU to sleep immediately. The module will automatically send all user data through wireless and automatically enter sleep within 1ms; This saves the MCU's working time and reduces power consumption.

4	 In the same way, any mode switching can take advantage of this feature. After the module processes the current mode event, it will automatically enter the new mode within 1ms; thus saving the user the work of querying AUX and achieving the purpose of fast switching; For example, switching from transmit mode to receive mode; the user MCU can also enter sleep in advance before mode switching and use the external interrupt function to obtain AUX changes to perform mode switching.
5	This operation method is very flexible and efficient. It is completely designed according to the user's MCU operation convenience and can reduce the workload of the entire system as much as possible, improve system efficiency and reduce power consumption.

6.2 Normal mode (mode 0)

Туре	When $M0 = 0$, $M1 = 0$, the module works in mode 0
Transmitting	The user can input data through the serial port, and the module will start wireless transmission.
Receiving	The wireless receiving function of the module is turned on. After receiving the wireless data, it will be output through the serial port TXD pin.

6.3 WOR mode (mode 1)

Туре	When M0 = 1, M1 = 0, the module works in mode 1
Transmitting	When defined as the transmitter, a wake-up code will be automatically added for a certain period of time before transmitting.
Receiving	Data can be received normally, and the receiving function is equivalent to mode 0

6.4 Configuration mode (mode 2)

Туре	When M0 = 0, M1 = 1, the module works in mode 2
Transmitting	Wireless transmission is turned off and automatically turned on during wireless configuration.
Receiving	Wireless reception is turned off and automatically turned on during wireless configuration.
Configuration	Users can access registers to configure module working status

6.5 Deep sleep mode (mode 3)

Туре	When M0 = 1, M1 = 1, the module works in mode 3
Transmitting	Unable to transmit wireless data.
Receiving	Unable to receive wireless data.
Notice	When entering other modes from sleep mode, the module will reconfigure parameters. During the configuration process, A UX remains low; After completion, it outputs high level, so it is recommended that the user detects the rising edge of AUX.

7 Register read and write control

7.1 Instruction format

configuration mode (mode 2: M1=1, M0=0), the supported command list is as follows (when setting, only 9600, 8N1 format is supported):

seria l num ber	Command format	Detailed description
1	Set register	Instruction: C0+start address+length+parameters Response: C1+start address+length+parameters Example 1: Configure the channel as 0x09 Instruction starting address length parameter Send: C0 05 01 09 Return: C1 05 01 09 Example 2: Configure module address (0x1234), network address (0x00), serial port (9600 8N1), and air speed (1.2K) at the same time Send: C0 00 04 12 34 00 61 Return: C1 00 04 12 34 00 61
2	Read register	Instruction: C1+start address+length Response: C1+start address+length+parameters Example 1: Reading the channel Instruction starting address length parameter Send: C1 05 01 Return: C1 05 01 09 Example 2: Read module address, network address, serial port, and airspeed simultaneously Send: C1 00 04 Return: C1 00 04 12 34 00 61
3	Set temporary register	Instruction: C2 + starting address + length + parameters Response: C1 + starting address + length + parameters Example 1: Configure the channel as 0x09 Instruction starting address length parameter Send: C2 05 01 09 Return: C1 05 01 09 Example 2: Configure module address (0x1234), network address (0x00), serial port (9600 8N1), and air speed (2.4K) at the same time

		Send: C2 00 04 12 34 00 61 Return: C1 00 04 12 34 00 61
		Instructions: CF CF + regular instructions Response: CF CF + regular response
4	wireless configuration	Example 1: The wireless configuration channel is 0x09 Wireless command header command starting address length parameter Send: CF CF C0 05 01 09 Return: CF CF C1 05 01 09 Example 2: Wireless simultaneous configuration of module address (0x1234), network address (0x00), serial port (9600 8N1), and air speed (2.4K)
		Send: CF CF C0 00 04 12 34 00 61 Return: CF CF C1 00 04 12 34 00 61
5	wrong format	Format error response FF FF FF

7.2 E22-400/900T22D register description

serial number	Read and write	Name				Describe	Remark
00H	read/w rite	ADDH	ADDI	I (defau	ılt 0)		Module address high byte and low byte; Note: When the module address is equal to FFFF,
01H	read/w rite	ADDL	ADDI	. (defau	lt 0)		it can be used as a broadcast and listening address, that is, the module will not perform address filtering at this time.
02Н	read/w rite	NETID	NETII) (defai	ılt 0)		Network address, used to distinguish networks; When communicating with each other, they should be set to the same value.
			7	6	5	U ART serial port rate (bps)	
	read/w	REG0	0	0	0	Serial port baud rate is 1200	
			0	0	1	Serial baud rate is 2400	Two modules communicating with each other can
			0	1	0	Serial baud rate is 4800	have different serial port baud rates and different verification methods;
			0	1	1	Serial port baud rate is 9600 (default)	When transmitting large data packets continuously, users need to consider data blocking
			1	0	0	The serial port baud rate is 19200	and possible loss caused by the same baud rate; It is generally recommended that both
0.211			1	0	1	Serial baud rate is 38400	communication parties have the same baud rate.
0 3H	rite		1	1	0	Serial baud rate is 57600	
			1	1	1	The serial port baud rate is 115200	
			4	3	Serial	port check digit	
			0	0	8N1 (default)	The social most medas of the communication
			0	1	801		The serial port modes of the communicating
			1	0	8E1		parties can be different;
			1	1	8N1 (equal to 0 0)	
			2	1	0	Wireless air rate (bps)	The air speed of both communicating parties must

	1				1	1	
			0	0	0	Air rate 2.4k	be the same ;
			0	0	1	Air rate 2.4k	air rate, the smaller the delay and the shorter the
			0	1	0	Air rate 2.4k (default)	transmission distance.
			0	1	1	Air rate 4.8k	
			1	0	0	Air speed 9.6k	
			1	0	1	Air rate 1 9.2k	
			1	1	0	Air speed 38.4k	
			1	1	1	Air speed 62.5k	
			7	6	Subco	ontracting settings	The data sent by the user is less than the packet
			0	0	240 b	ytes (default)	length, and the serial port output at the receiving end appears as uninterrupted continuous output;
			0	1	128 b	ytes	The data cant by the year is larger than the most of
			1	0	64 by	tes	The data sent by the user is larger than the packet length, and the serial port of the receiving end will
			1	1	32 byt	tes	be packetized and output.
			5	RSSI	environ	mental noise enable	After enabling, the command C0 C1 C2 C3
			0	Disab	led (def	ault)	command can be sent in transfer mode or WOR send mode to read the register;
			1	enable	÷		Register 0x00: Current environmental noise RSSI; Register 0x01: RSSI when data was last received (The current channel noise is: dBm = - (256 - RSSI)); Instruction format: C0 C1 C2 C3+start address+read length; Return: C1 + address + read length + read valid value; for example: send C0 C1 C2 C3 00 01 Return C1 00 01 RSSI (address can only start from 0 0)
			4	4 3 reserve 2 Software mode switching			
			2				If you do not want to use the M0 M1 pins to
0 4H	read/w	REG1	0	Disab	led (def	ault)	switch working modes, you can
	rite	REGI					To enable this feature, use specific serial port
							commands to switch modes.
							Format: C0 C1 C2 C3 02 + working mode
							Send C0 C1 C2 C3 02 00 to switch to transparent
							transmission mode
							Send C0 C1 C2 C3 02 01 to switch to WOR mode
			1	enable	e		Send C0 C1 C2 C3 02 02 to switch to
							configuration mode
							Send C0 C1 C2 C3 02 03 to switch to sleep mode
							Return: C1 C2 C3 02 + working mode
							Note: After enabling this function, WOR mode
							and sleep mode only support
							Maintain 9600 baud rate.
			1	0	Trans	mit power	There is a non-linear relationship between power
			0	0	22 dB	Sm (default)	and current. At the maximum power, the power supply efficiency is the highest;
			0	1	17 dB	Sm	
			1	0	13 dB	Sm	Current does not decrease proportionally with
			1	1	1 0 dI	3m	lower power.

			Chann	el Cont	rol (CH	I)	
			1			epresent a total of 8 4 channels	
0 5H	read/w	REG2	(appli	cable to	the 40	0 frequency band)	Actual frequency = 410.125 + CH * 1M
0 011	rite	123.52	0-80	respecti	vely r	epresent a total of 81 channels	Actual frequency = 850.125 + CH *1M
			(appli	cable to	the 90	0 frequency band)	
			7	Enabl	e RSSI	bytes	
			0		led (de:	•	After enabling, the module receives wireless data and outputs it through the serial port TXD, which
			1	enable			will be followed by an RSSI strength byte.
			6		er meth	and	During fixed-point transmission, the module will
			0			transmission (default)	identify the first three bytes of serial port data as:
			1			ransmission	address high + address low + channel, and use them as wireless transmission targets.
			5				After the relay function is enabled, if the target
			-		function		address is not the module itself, the module will
			0	Disab	le relay	functionality (default)	start a forwarding ; In order to prevent data from being transmitted
			1	Enabl	e relay	function	back, it is recommended to use it in conjunction with fixed-point mode; that is, the destination address and source address are different.
			4	LBT e	enable		When enabled, wireless data will be monitored before transmission, which can avoid interference
			0	Disab	led (de	fault)	to a certain extent, but may cause data delays;
			1	enable	e		The maximum dwell time of LBT is 2 seconds. If it reaches two seconds, it will be forcibly issued.
		REG3	3	WOR	mode	transceiver control	Only valid for mode 1; 1. In the receiving mode of wor, the module can modify the delay time after waking up, and the default time is 0; 2. The receiving end needs to send the command C0 09 02 03 E8 in the configuration mode (C0 is the write command, 09 is the register starter address, 02 is the length, 03 E8 is the set delay, the maximum FFFF is 65535ms, set to 0 turns off the wake-up delay.) 3. Data can be sent within the delay
0 6H	read/w			W OR	receiv	ver (default)	
	rite		0	Worki	ing in V	WOR listening mode, the listening	
				cycle	is show	vn below (WOR cycle), which can	
				save a	lot of	power consumption.	
				W OR	transn	nitter	
			1	The m	nodule	transceiver is turned on, and when	
				transn	nitting	data, a wake-up code for a certain	
				period	l of tim	e is added.	
			2	1	0	W OR cycle	
			0	0	0	500ms	Only valid for mode 1;
			0	0	1	1000ms	Period T= (1+WOR) *500ms, the maximum is
			0	1	0	1500ms	4000ms, the minimum is 500ms;
			0	1	1	2000ms	WOR listening interval period, the lower the
			1	0	0	2500ms	average power consumption, but the greater the
			1	0	1	3000ms	data delay;
			1	1	0	3500ms	The sender and receiver must be consistent (very important)
			1	1	1	4000ms	
0 7H	Write	CRYPT _H		igh byte			Write only, read returns 0; Used for encryption to avoid interception of wireless data in the air by similar modules;
		CDVDT					The module will use these two bytes internally as
0 8H	Write	CRYPT _L	Key lo	w byte	(defaul	t 0)	calculation factors to transform and encrypt the air
							wireless signal.
8 0H ~ 8	read	PID	Produc	ct inforr	nation	7 bytes	Product information 7 bytes

6H

7.3 E22-230T22D register description

serial number	Read and write	name				describe	Remark	
00Н	read/w rite	ADDH	ADDI	I (defau	lt 0)		Module address high byte and low byte; Note: When the module address is equal to FFFF,	
01H	read/w rite	ADDL	ADDL	رdefau (defau	lt 0)		it can be used as a broadcast and listening address, that is, the module will not perform address filtering at this time.	
02H	read/w rite	NETID	NETII	O (defau	ılt 0)		Network address, used to distinguish networks; When communicating with each other, they should be set to the same value.	
			7	6	5	U ART serial port rate (bps)		
			0	0	0	Serial port baud rate is 1200		
			0	0	1	Serial baud rate is 2400	Two modules communicating with each other can	
			0	1	0	Serial baud rate is 4800	have different serial port baud rates and different verification methods;	
		REG0	0	1	1	Serial port baud rate is 9600 (default)	When transmitting large data packets continuously, users need to consider data blocking	
			1	0	0	The serial port baud rate is 19200	and possible loss caused by the same baud rate; It is generally recommended that both communication parties have the same baud rate.	
			1	0	1	Serial baud rate is 38400		
			1	1	0	Serial baud rate is 57600		
			1	1	1	The serial port baud rate is 115200		
0.211	read/w		4	3	Serial	port check digit		
0 3H	rite		0	0	8 N1 ((default)		
			0	1	801		The serial port modes of the communicating	
				1	0	8 E1		parties can be different;
			1	1	8 N1 (equal to 0 0)		
			2	1	0	Wireless air rate (bps)		
			0	0	0	Air speed 2. 4k		
			0	0	1	Air speed 2. 4k		
			0	1	0	Air speed 2. 4k (default)	The air speed of both communicating parties must be the same;	
			0	1	1	Air speed 4. 8k	,	
			1	0	0	Air speed 9. 6k	air rate, the smaller the delay and the shorter the transmission distance.	
			1	0	1	Air speed 19. 2k		
			1	1	0	Air speed 38. 4k		
			1	1	1	Air speed 62. 5k		

			7	6	Subcontracting settings	The data sent by the user is less than the packet		
			0	0	2 40 bytes (default)	length, and the serial port output at the receiving end appears as uninterrupted continuous output;		
			0	1	1 28 bytes	7		
			1	0	6 4 bytes	The data sent by the user is larger than the packet length, and the serial port of the receiving end will		
			1	1	3 2 bytes	be packetized and output.		
						AA		
			5		environmental noise enable	After enabling, the command C0 C1 C2 C3 command can be sent in transfer mode or WOR		
			0	Disab	led (default)	send mode to read the register;		
			1	enable	÷	Register 0x00: Current environmental noise RSSI; Register 0x01: RSSI when data was last received (The current channel noise is: dBm = -(256-HEX) HEX is hexadecimal); Instruction format: C0 C1 C2 C3+start address+read length; Return: C1 + address + read length + read valid value; For example: send C0 C1 C2 C3 00 01 Return C1 00 01 RSSI (address can only start from 0 0)		
			4	Softw	are mode switching	If you do not want to use the M0 M1 pins to		
			0	Disab	led (default)	switch working modes, you can		
0 4H	read/w	REG1				To enable this feature, use specific serial port		
	rite				commands to switch modes.			
						Format: C0 C1 C2 C3 02 + working mode		
						Send C0 C1 C2 C3 02 00 to switch to transparent		
			1			transmission mode		
						Send C0 C1 C2 C3 02 01 to switch to WOR mode		
				enable		Send C0 C1 C2 C3 02 02 to switch to		
						configuration mode		
						Send C0 C1 C2 C3 02 03 to switch to sleep mode		
						Return: C1 C2 C3 02 + working mode		
						Note: After enabling this function, WOR mode		
						and sleep mode only support		
						Maintain 9600 baud rate.		
			3	2	reserve			
			1	0	Transmit power	There is a non-linear relationship between power and current. At the maximum power, the power		
			0	0	22 dBm (default)	supply efficiency is the highest;		
			0	1	17 dBm			
			1	0	13 dBm	Current does not decrease proportionally with		
			1	1	1 0 dBm	lower power.		
0 5H	read/w rite	REG2	1		rol (CH) ely represent a total of 65 channels	Actual frequency = 220.125 + CH *0.25M		
			7	Enable	e RSSI bytes	After enabling, the module receives wireless data		
	mag 1/		0	Disab	led (default)	and outputs it through the serial port TXD, which		
0 6H	read/w rite	REG3	1	enable		will be followed by an RSSI strength byte.		
	rite		6	transfe	er method	During fixed-point transmission, the module will identify the first three bytes of serial port data as:		
			0	Trans	parent transmission (default)	address high + address low + channel, and use		

			1	Fixed	point t	ransmission	them as wireless transmission targets.
			5	Relay	functio	on	After the relay function is enabled, if the target
			0	Disab	le relay	functionality (default)	address is not the module itself, the module will start a forwarding;
			1	Enabl	e relay	function	In order to prevent data from being transmitted back, it is recommended to use it in conjunction with fixed-point mode; that is, the destination address and source address are different.
			4	LBT 6	enable		When enabled, wireless data will be monitored
			0	Disab	led (de	fault)	before transmission, which can avoid interference to a certain extent, but may cause data delays;
			1	enable	e		The maximum dwell time of LBT is 2 seconds. If it reaches two seconds, it will be forcibly issued.
			3	WOR	mode	transceiver control	
	0				ing in V	vn below (WOR cycle), which can power consumption.	Only valid for mode 1; 1. In the receiving mode of wor, the module can modify the delay time after waking up, and the default time is 0; 2. The receiving end needs to send the command C0 09 02 03 E8 in the configuration mode (C0 is
			1	W OR transmitter The module transceiver is turned on, and when transmitting data, a wake-up code for a certain period of time is added.			the write command, 09 is the register starter address, 02 is the length, 03 E8 is the set delay, the maximum FFFF is 65535ms, set to 0 turns off the wake-up delay.) 3. Data can be sent within the delay
			2	1	0	W OR cycle	
			0	0	0	500ms	Only valid for mode 1;
			0	0	1	1000ms	Period T= (1+WOR) *500ms, the maximum is
			0	1	0	1500ms	4000ms, the minimum is 500ms;
			0	1	1	2000ms	WOR listening interval period, the lower the
			1	0	0	2500ms	average power consumption, but the greater the
			1	0	1	3000ms	data delay;
			1	1	0	3500ms	The sender and receiver must be consistent (very important)
			1	1	1	4000ms	- Importantly
07H	写	CRYPT _H	Key h	igh byte	(defau	lt 0)	Write only, read returns 0; Used for encryption to avoid interception of wireless data in the air by similar modules;
0 8H	Write	CRYPT _L	Key lo	w byte	(defaul	t 0)	The module will use these two bytes internally as calculation factors to transform and encrypt the air wireless signal.
8 0H ~ 8 6H	read	PID	Produ	et inforr	nation	7 bytes	Product information 7 bytes

7.4 Factory default parameters

Model	E22-230T22 D factory default parameter values: C0 00 09 00 00 00 60 00 28 03 00 00 E22-400T22D factory default parameter value: C0 00 09 00 00 00 60 00 17 03 00 00 E22-900T22D factory default parameter value: C0 00 09 00 00 00 60 00 12 03 00 00						
Module model	frequency	address	channel	Air speed	baud rate	Serial port format	Transmit power

E22-230T 22D	230.125MHz	0x0000	0x28	2.4kbps	9600	8N1	22dbm
E22-400T22D	433.125MHz	0x0000	0x17	2.4kbps	9600	8N1	22dbm
E22-900T22 D	868.125MHz	0x0000	0x12	2.4kbps	9600	8N1	22dbm

8 AT commands

- AT commands are used in configuration mode. AT commands are divided into three categories: command commands, setting commands and query commands;
- Users can query the AT command set supported by the module through "AT+HELP=?". The baud rate used by the AT command is 9600 8N1;
- When the input parameters exceed the range, they will be restricted. Please do not let the parameters exceed the range to avoid unknown situations.

8.1AT command list

Command instructions	Describe	Example	Example description
AT+IAP (use with caution,			
please see <u>8.3</u> Precautions for	Enter IAP upgrade	AT+IAP	Entan IAD un anada mada
Serial Port Firmware Upgrade in	mode	AITIAP	Enter IAP upgrade mode
this article for details)			
AT+RESET	Device restart	AT+RESET	Device restart
AT+DEFAULT	Restore configuration	AT+DEFAULT	Restore configuration
	parameters to default		parameters to default
	and the device restarts		and the device restarts

Setup instructions	Describe	Example	Example description
AT+UART=baud,parity	Set baud rate and parity	AT+UART=3,0	Set the baud rate to 9600,
			8N0
AT+RATE=rate	Set air speed	AT+RATE=7	Set the air rate to 16.4K
AT+PACKET=packet	Set packet length	AT+PACKET=0	Set the packet size to 240
			bytes
AT+WOR=role,period	Set WOR roles and cycles	AT+WOR=0,3	Set to WOR reception,
			cycle is 2000ms
AT+POWER=power	Set transmit power	AT+POWER=0	Set the transmit power to
			22dBm
AT+TRANS=mode	Set sending mode	AT+TRANS=1	Set to fixed point mode
AT+ROUTER=router	Set relay mode	AT+ROUTER=1	Set to relay mode
AT+LBT=lbt	Set Listen Before Talk	AT+LBT=1	Setting is enabled, please

	function switch		refer to Section 7.2 LBT		
			Enable for details.		
AT+ERSSI=erssi	Set the ambient noise	AT+ERSSI=1	The setting is enabled. For		
	RSSI switch		details, please refer to		
			Section 7.2 RSSI		
			Environmental Noise		
			Function.		
AT+DRSSI=data_rssi	Set the receive data RSSI	AT+DRSSI=1	Receive data RSSI		
	switch		function is turned on		
AT+ADDR=addr	Set module address	AT+ADDR=1234	Set the module address to		
			1234		
AT+CHANNEL=channel	Set module working	AT+CHANNEL=23	Set frequency to		
	channel		433.125M		
AT+NETID=netid	Set network ID	AT+NETID=2	Set network ID to 2		
AT+KEY=key	Set module key	AT+KEY=1234	Set the module key to		
			1234		
AT+DEL AV=dolov	Sat WOP dalay slaan time	AT+DELAY=1000	Set the WOR delay sleep		
AT+DELAY=delay	Set WOR delay sleep time	AITDELAI-1000	time to 1000ms		
AT+SWITCH=switch	Setting software mode	AT+SWITCH=1	Settings are turned on to		
AITSWITCH-SWICH	switch	AITSWITCH-I	allow software switching		

Query command	Describe	Return example	Example description	
AT+HELP=?	Query AT command table		Return to AT command list	
AT+DEVTYPE=?	Query module model	DEVTYPE=E29-400T22S/D	Return module model	
AT+FWCODE=?	Query firmware code	FWCODE=7432-0-10	Return firmware version	
AT+UART=?	Query baud rate and	AT+UART=3,0	Return baud rate 9600,	
	checksum		8N1	
AT+RATE=?	Query air speed	AT+RATE=7	Return air rate is 16.4K	
AT+PACKET=?	Query packet length	AT+PACKET=0	returned packet is 240	
			bytes	
AT+WOR=?	Query WOR roles and	AT+WOR=0,3	Return to WOR reception,	
AI+WOK-!	cycles	A1+WOK-0,3	the cycle is 2000ms	
AT+POWER=?	Query transmit power	AT+POWER=0	The return transmit power	
			is 22dBm	
AT+TRANS=?	Query sending mode	AT+TRANS=1	Return to fixed point	
			mode	
AT+ROUTER=?	Query relay mode	AT+ROUTER=1	Return to relay mode	
AT+LBT=?	Query the Listen Before	AT+LBT=1	Return LBT switch status	
	Talk function switch			

AT+ERSSI=?	Query the environmental	AT+ERSSI=1	Return to ambient noise	
	noise RSSI switch		switch status	
AT+DRSSI=?	Query RSSI output	AT+DRSSI=1	Return channel RSSI	
			function is enabled	
AT+ADDR=?	Query module address	AT+ADDR=1234	The return module address	
			is 1234	
AT+CHANNEL=?	Query module working	AT+CHANNEL=23	return frequency is	
	channel		433.125M	
AT+NETID=?	Query network ID	AT+NETID=2	Return network ID is 2	
AT+KEY=?	Query module key	Reading is not supported	Return ERR	
		(security considerations)		
ATIDELAV-2	Query WOR delayed sleep	AT+DELAY=1000	Return to WOR delayed	
AT+DELAY=?	time	AITDELAI-1000	sleep time is 1000ms	

8.2 AT parameter analysis

When the serial port receives the correct command, the serial port will return "command=OK", otherwise it will return "=ERR"

Command parameters	Parameter meaning		
Dovid (social mout hoved unto)	0:1200 1:2400 2:4800 3:9600		
Baud (serial port baud rate)	4:19200 5:38400 6:57600 7:115200		
Parity (serial port parity bit)	0:8N1 1:8O1 2:8E1 3:8N1		
Data (assentha ain nota)	0:2.4K 1:2.4K 2:2.4K 3:4.6K		
Rate (over-the-air rate)	4:8.2K 5:4.8K 6:16.4K 7:16.4K		
Packet (packet length)	0: 240 1: 128 2:64 3:32		
Role (WOR role)	0: Receive 1: Send		
Davied (WOD married)	0:500ms 1:1000ms 2:1500ms 3:2000ms		
Period (WOR period)	4:2500ms 5:3000ms 6:3500ms 7:4000ms		
Power (transmission power) Note 1	0: 22dBm		
Mode (transmission mode)	0: transparent 1: fixed point		
Router (relay mode)	0: Close 1: open		
LBT(listen before talk)	0: Close 1: open		
Erssi (environment RSSI)	0: Close 1: open		
Data_rssi (data RSSI)	0: Close 1: open		
Addr (module address)	Module address 0~65535 (decimal)		
Channel (module channel)	Module channel 0~83 (decimal)		
Netid (Network ID)	Module network 0~255 (decimal)		
Key	Module key 0~65535 (decimal)		
Delay (WOR delayed sleep)	Delayed sleep 0~65535 (decimal)		

Note 1: Modules with different powers have different settings. You can check the transmission power in Section 7.2 of the manual.

8.3Things to note when upgrading firmware via serial port

If the customer needs to upgrade the firmware, they need to find the corresponding BIN file provided by the official, and then use the officially provided host computer to upgrade the firmware. Generally, users do not need to upgrade the firmware. Please do not use the "AT+IAP" command.

The pins necessary for the upgrade must be lead out (M1, M0, AUX, TXD, RXD, VCC, GND), and then send the "AT+IAP" command in the configuration mode to enter the upgrade mode. If you need to exit the IAP upgrade mode, you need to keep Power on and wait 60 seconds, the program will automatically exit, otherwise it will enter the upgrade mode indefinitely even if it is restarted.

After entering the upgrade mode, the baud rate will automatically switch to 115200 until it automatically exits, during which there will be log output.

9 Relay networking mode use

No.	Relay mode description
1	After setting the relay mode through the configuration mode, switch to the general mode and the relay starts to work.
2	In relay mode, ADDH and ADDL are no longer used as module addresses, but correspond to NETID forwarding pairs respectively. If one of the networks is received, it will be forwarded to the other network; The repeater's own network ID is invalid.
3	In relay mode, the relay module cannot send and receive data and cannot perform low-power operation.
4	When the user enters other modes from mode 3 (sleep mode) or during the reset process, the module will reset the user parameters, during which the AUX output is low level.

Description of trunk networking rules:

- 1. Forwarding rules, the relay can forward data in both directions between two NETIDs.
- 2. In relay mode, ADDH\ADDL is no longer used as module address, but as NETID forwarding pairing.

As shown in the picture:

1 relay

"Node 1" NETID is 08.

"Node 2" NETID is 33.

The ADDH\ADDL of trunk 1 are 08 and 33 respectively.

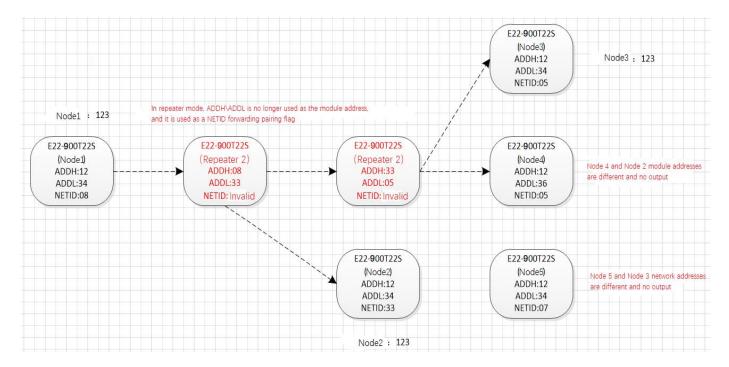
So the signal sent by node 1 (08) can be forwarded to node 2 (33)

At the same time, node 1 and node 2 have the same address, so the data sent by node 1 can be received by node 2.

2 relay

The ADDH\ADDL of relay 2 are 33 and 05 respectively.

So relay 2 can forward relay 1's data to network NETID: 05.


Therefore, node 3 and node 4 can receive the node 1 data. Node 4 outputs data normally. Node 3 has different addresses from node 1,

so no data is output.

3Two -way relay

As shown in the figure, the data sent by node 1 can be received by nodes 2 and 4, and the data sent by nodes 2 and 4 can also be received by node 1.

10 Host computer configuration instructions

• The picture below shows the configuration host computer display interface of E2 2 - 9 00T22 D as an example. The user can switch to command mode through M0 and M1 to quickly configure and read parameters on the host computer.

 In configuring the host computer, the module address, frequency channel, network ID, and key are all in decimal display mode; the value range of each parameter is:

Network address: $0\sim65535$

Frequency channel: 0~8 1

Network ID: 0~255

Key: $0 \sim 65535$

• Users need to pay special attention when using the host computer to configure the relay mode. Since the parameters in the host computer are in decimal display mode, the module address and network ID need to be filled in through decimal conversion;

For example, the network ID input by the transmitter A is 02 and the network ID input by the receiver B is 10. When the relay R sets the module address, the hexadecimal value 0X020A is converted into the decimal value 522 and filled in by the relay R. module address;

That is, the module address value that relay terminal R needs to fill in at this time is 522.

11 Hardware design

- It is recommended to use a DC regulated power supply to power the module. The power supply ripple coefficient should be as small as possible, and the module must be reliably grounded;
- Please pay attention to the correct connection of the positive and negative poles of the power supply. Reverse connection may cause permanent damage to the module;
- Please check the power supply to ensure that it is within the recommended power supply voltage. If it exceeds the maximum
 value, it will cause permanent damage to the module;
- Please check the stability of the power supply. The voltage cannot fluctuate greatly and frequently;
- When designing the power supply circuit for the module, it is often recommended to reserve more than 30% margin, so that the

- whole machine can work stably for a long time;
- The module should be kept as far away as possible from power supplies, transformers, high-frequency wiring and other parts with high electromagnetic interference;
- High-frequency digital traces, high-frequency analog traces, and power traces must avoid the bottom of the module. If it is really
 necessary to pass under the module, assume that the module is welded on the Top Layer, and ground copper is laid on the Top
 Layer of the module contact part (all copper is laid and Good grounding), must be close to the digital part of the module and
 routed on the Bottom Layer;
- Assuming that the module is welded or placed on the Top Layer, it is also wrong to route traces randomly on the Bottom Layer
 or other layers, which will affect the module's spurious and receiving sensitivity to varying degrees;
- Assuming that there are devices with large electromagnetic interference around the module, which will also greatly affect the
 performance of the module, it is recommended to stay away from the module according to the intensity of the interference. If the
 situation allows, appropriate isolation and shielding can be done;
- Assuming that there are traces with large electromagnetic interference around the module (high-frequency digital,
 high-frequency analog, power traces), it will also greatly affect the performance of the module. It is recommended to stay away
 from the module according to the intensity of the interference. If the situation allows, you can make appropriate adjustments.
 isolation and shielding;
- If the communication line uses 5V level, a 1k-5.1k resistor must be connected in series (not recommended, there is still a risk of damage);
- Try to stay away from some TTL protocols whose physical layer is also 2.4GHz, such as USB3.0;
- The antenna installation structure has a great impact on module performance. Make sure the antenna is exposed and preferably vertically upward;
- When the module is installed inside the case, you can use a high-quality antenna extension cable to extend the antenna to the outside of the case;
- The antenna must not be installed inside a metal shell, as this will greatly reduce the transmission distance.

12 FAQ

12.1 Transmission distance is not ideal

- When there are straight-line communication obstacles, the communication distance will be correspondingly attenuated;
- Temperature, humidity, and co-channel interference will cause the communication packet loss rate to increase;
- The ground absorbs and reflects radio waves, and the test effect is poor when close to the ground;
- Seawater has a strong ability to absorb radio waves, so the seaside test results are poor;
- If there are metal objects near the antenna, or if it is placed in a metal case, the signal attenuation will be very serious;
- The power register setting is wrong and the air rate is set too high (the higher the air rate, the closer the distance);
- The low voltage of the power supply at room temperature is lower than the recommended value. The lower the voltage, the smaller the power generated;
- There is a poor match between the antenna and the module or there is a problem with the quality of the antenna itself.

12.2 Modules are easily damaged

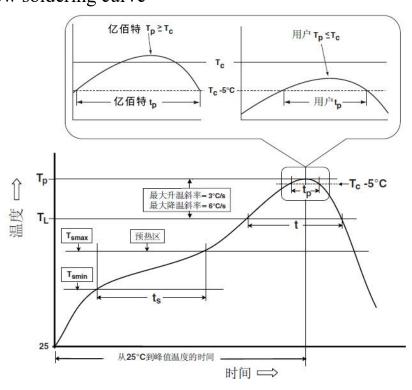
- Please check the power supply to ensure that it is within the recommended power supply voltage. If it exceeds the maximum value, it will cause permanent damage to the module;
- Please check the stability of the power supply. The voltage cannot fluctuate greatly and frequently;
- Please ensure anti-static operation during installation and use, as high-frequency devices are sensitive to static electricity;
- Please ensure that the humidity during installation and use should not be too high, as some components are humidity-sensitive devices;
- If there are no special needs, it is not recommended to use it at too high or too low temperature.

12.3The bit error rate is too high

- If there is co-channel signal interference nearby, stay away from the interference source or modify the frequency or channel to avoid interference;
- Unsatisfactory power supply may also cause garbled code, so be sure to ensure the reliability of the power supply;
- Poor quality or too long extension cords and feeders can also cause a high bit error rate.

13 Welding operation guidance

13.1Reflow soldering temperature


Reflow soldering curve characteristics		Lead process assembly	Lead-free process assembly	
	Minimum temperature (Tsmin)	100°C	150°C	
Preheat /keep warm	Maximum temperature (T smax)	150°C	200°C	
	Time (T smin ~T smin)	60-120 seconds	60-120 seconds	
Temper	rature rise slope (T L ~T p)	3°C/second, maximum	3°C/second, maximum	
Liqu	uidus temperature (TL)	183℃	217°C	
Н	olding time above T L	60~90 seconds	60~ 90 seconds	
Package peak temperature T p		Users should not exceed the temperature indicated on the product's "Moisture Sensitivity" label.		
p) within 5°C of the specified classification temperature (Tc), see the figure below		20 seconds	30 seconds	

Cooling slope (T p ~T L)	6°C/second, maximum	6°C/second, maximum		
Time from room temperature to peak	6 minutes, maximum	8 minutes, maximum		
temperature				
*The peak temperature (Tp) tolerance definition of the temperature curve is the upper limit of the user				

13.2 Reflow soldering curve

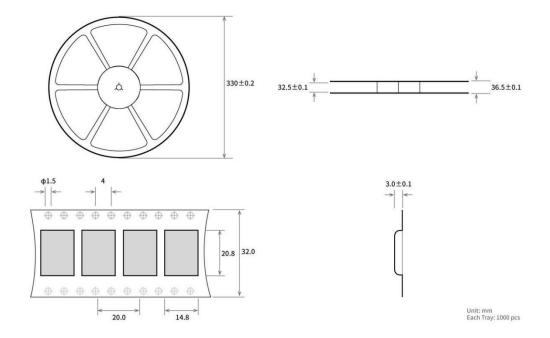
14 Relat

Product number	carrier frequency Hz	Transmit power dBm	Test distance km	Package form	Product Size mm	Communicatio n Interface
E22-230T22S	230M	twenty two	5	patch	16*26	TTL
E22-230T30S	230M	30	10	patch	20*40.5	TTL
E22-400T22S	433/470M	twenty two	5	patch	16*26	TTL
E22-400T30S	433/470M	30	10	patch	20*40.5	TTL
E22-900T22S	868 / 915M	twenty two	5	patch	16*26	TTL
E22-900T30S	868 / 915M	30	10	patch	20*40.5	TTL
E22-400M22S	433/470M	twenty two	7	patch	14*20	SPI
E22-400M30S	433/470M	30	12	patch	24*38.5	SPI
E22-900M22S	868 / 915M	twenty two	7	patch	14*20	SPI
E22-900M30S	868 / 915M	30	12	patch	24*38.5	SPI

15 Antenna Guide

15.1 Antenna recommendations

Antennas play an important role in the communication process. Often poor-quality antennas will have a great impact on the communication system. Therefore, our company recommends some antennas as antennas that support our wireless modules and have excellent performance and reasonable prices.


Product number	type	frequency band Hz	interface	Gain dBi	high m m	feeder c m	Features
TX433-NP-4310	flexible antenna	433M	welding	2.0	43.8*9.5	-	Built-in flexible, FPC soft antenna
TX433-JZ-5	glue stick antenna	433M	SMA-J	2.0	52	-	Ultra-short straight, omnidirectional antenna
<u>TX433-JZG-6</u>	glue stick antenna	433M	SMA-J	2.5	62	1	Ultra-short straight, omnidirectional antenna
<u>TX433-JW-5</u>	glue stick antenna	433M	SMA-J	2.0	50	ı	Bend glue stick, omnidirectional antenna
<u>TX433-JWG-7</u>	glue stick antenna	433M	SMA-J	2.5	75	1	Bend glue stick, omnidirectional antenna
TX433-JK-11	glue stick antenna	433M	SMA-J	2.5	110	1	Bendable glue stick, omnidirectional antenna

<u>TX433-JK-20</u>	glue stick antenna	433M	SMA-J	3.0	210	-	Bendable glue stick, omnidirectional antenna
<u>TX433-XPL -</u> <u>100</u>	suction cup antenna	433M	SMA-J	3.5	18 5	100	Small suction cup antenna, cost-effective
TX433-XP-200	suction cup antenna	433M	SMA-J	4.0	19 0	200	Neutral suction cup antenna, low loss
<u>TX433-XPH-30</u> <u>0</u>	suction cup antenna	433M	SMA-J	6.0	96 5	300	Large suction cup antenna, high gain
TX490-JZ-5	glue stick antenna	4 7 0 /490 M	SMA-J	2.0	50	-	Ultra-short straight, omnidirectional antenna
<u>TX490-XPL -</u> <u>100</u>	suction cup antenna	4 7 0 /490 M	SMA-J	3.5	12 0	100	Small suction cup antenna, cost-effective

16 Batch packaging methods

16.1 E22-230/400/900T22S batch packaging method

Revise history

Version	Revision date	Revision Notes	Maintenance man
1.0	2024-4-11	initial version	LAU
1.1	2024-6-6	Parameter modification	LAU

About us

Technical support: support@cdebyte.com

Documents and RF Setting download link: www.cdebyte.com

Thank you for using Ebyte products! Please contact us with any questions or suggestions: info@cdebyte.com

Official hotline:028-61399028

Web: www.cdebyte.com

Address: , Building B5, Mould Industrial Park, 199# Xiqu Ave, High-tech Zone, Chengdu, 611731, Sichuan, China

(((•))) [®] Chengdu Ebyte Electronic Technology Co.,Ltd.