■ Description

The MST56XXB series is a high input voltage (60V), low quiescent current, High PSRR linear regulator (LDO) able to provide 150mA load current.

The LDO features very fast response against line voltage transient and load current transient, and ensures no overshoot voltage during the LDO start up and short circuit recovery.

The device features integrated short-circuit and thermal shutdown protection.

The device is available with fixed output voltages of 3.0V, 3.3V, 3.6V and 5.0V, and available in SOT23,TO252 and SOT89 packages.

■ Application

- > Battery-powered equipment
- Smoke detector and sensor
- Micro controller Applications
- ➤ Home Appliance

■ Features

➤ Low Quiescent Current: 2uA

➤ High Input Voltage Rating: Up to 60V

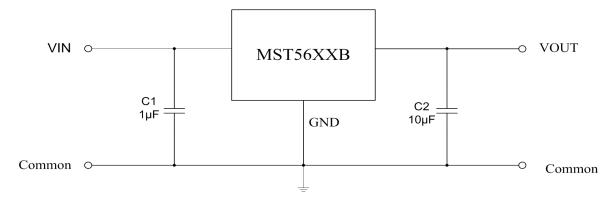
➤ Output Current: 150mA

➤ High PSRR: 70dB at 1Khz

➤ Dropout Voltage:

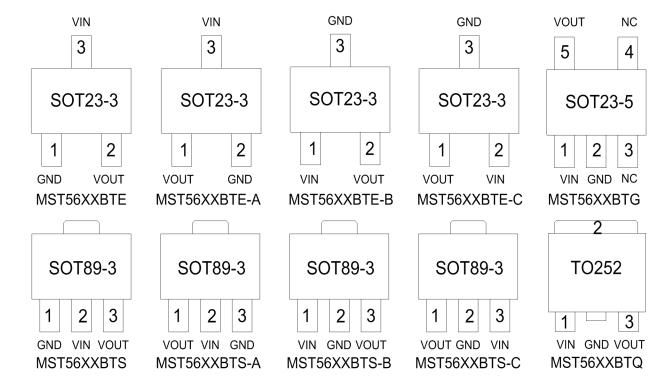
70mV@10mA

700mV@100mA


Fixed Output Voltages:

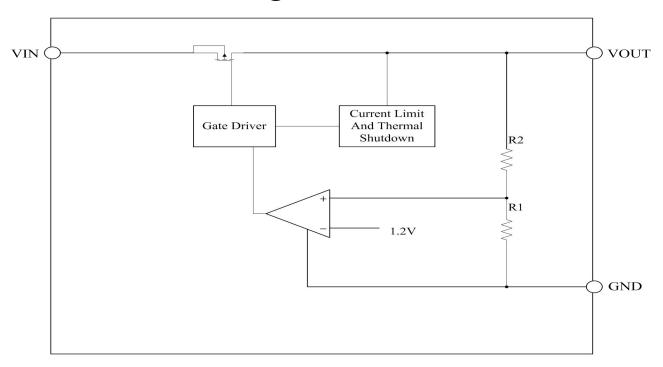
3.0V, 3.3V, 3.6V and 5.0V

- ➤ High-accuracy Output Voltage: ±2%
- ➤ Good Transient Response
- ➤ Integrated Short-Circuit Protection
- ➤ Integrated Thermal Protection
- ➤ Available Packages:


MST56XXBTE	
MST56XXBTE-A	SOT23-3
MST56XXBTE-B	
MST56XXBTE-C	
MST56XXBTS	
MST56XXBTS-A	SOT89-3
MST56XXBTS-B	
MST56XXBTS-C	
MST56XXBTG	SOT23-5
MST56XXBTQ	TO-252

■ Application Circuits

■ Packages And Pin Assignment



■ Pin Descriptions

SOT23-3				Pin	D	
MST56XXBTE	MST56XXBTE-A	MST56XXBTE-B	MST56XXBTE-C	Name	Description	
1	2	3	3	GND	Ground Pin	
2	1	2	1	VOUT	Output Pin	
3	3	1	2	VIN	Input Pin	
	so	T89-3		Pin	T	
MST56XXBTS	MST56XXBTS-A	MST56XXBTS-B	MST56XXBTS-C	Name	Description	
1	3	2	2	GND	Ground Pin	
3	1	3	1	VOUT	Output Pin	
2	2	1	3	VIN	Input Pin	
SOT23-5		TO-252		Pin	Dagawindian	
MST5	MST56XXBTG		MST56XXBTQ		Description	
1		1		VIN	Input Pin	
2 2		GND	Ground Pin			
	3		3		NC	No Connection
	4				No Connection	
5		VOUT	Output Pin			

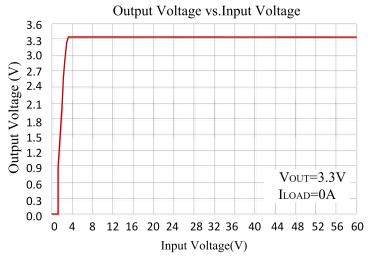
■ Functional Block Diagram

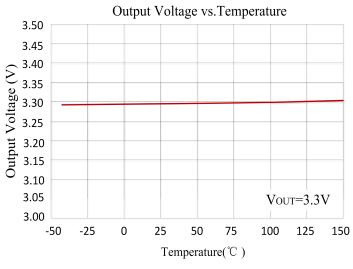
■ Absolute Maximum Ratings

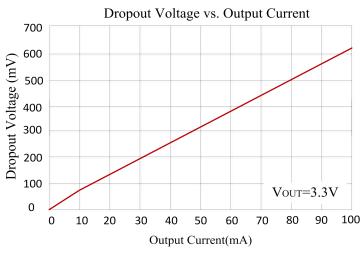
Item	Description	Min	Max	Unit
	VIN to GND	-0.3	60	V
Voltage	VOUT to GND	-0.3	6	V
	VOUT to VIN	-35 0.3		V
Current	Peak output current	Internally limited		
Temperature	Operating Ambient Temperature	-40	85	$^{\circ}$
	Storage Temperature	-40	150	$^{\circ}$
	Operating virtual junction Temperature		150	$^{\circ}$
	SOT89	180		°C/W
Thermal Resistance (Junction to Ambient)	SOT23	380		°C/W
(* 3.222.22.3)	TO252	80		°C/W
	SOT89	600		mW
Power Dissipation	SOT23	300		mW
	TO252	2000		mW
Electrostatic	Electrostatic Human Body Model (HBM)			kV
discharge rating	Charged Device Model (MM)	100		V

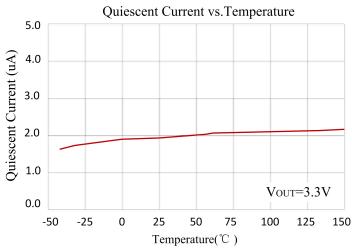
■ Electrical Characteristics

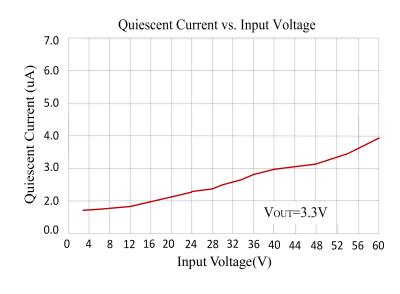
(At $T_{A}\!\!=\!\!25^{\circ}\text{C},\,C_{IN}\!\!=\!\!1\text{uF},\,V_{IN}\!\!=\!\!V_{OUTNOM}\!\!+\!1.0V,\,C_{OUT}\!\!=\!\!10\text{uF},\,\text{unless otherwise noted}$)

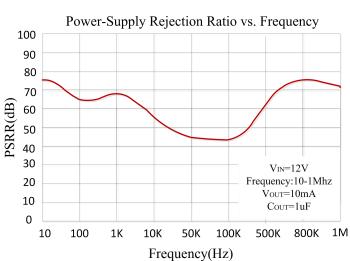

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
VIN	Input Voltage		5		60	V
Ignd	Quiescent Current	VIN=12V, No load		2		uA
VOUT	Output Voltage	VIN=12V, IOUT=10mA	VOUTNOM * 0.98	Voutnom	VOUTNOM * 1.02	V
IOUT_MAX	Output Current			150	_	mA
Vdrop	Dropout Voltage(1)	IOUT=10mA, VIN=VOUTNOM-0.1V	_	70		mV
		IOUT=100mA, VIN=VOUTNOM-0.1V	_	700	_	mV
ΔV out(Δ Iout)	Load Regulation	VIN=12V, 1mA≤Iout≤100mA	_	0.02		%/mA
ΔV out(ΔV in)	Line Regulation	IOUT=1mA, Voutnom+0.5V≤Vin≤60 V		0.01		%/V
Ilimit	Current Limit			250		mA
Tshdn	Thermal Shutdown Temperature	Shutdown, temperature increasing	_	150	_	$^{\circ}$
		Reset, temperature decreasing	_	140	_	
PSRR		Vin=12V, Iout=10mA F=1Khz,Vout=3.3V	_	70	_	dB

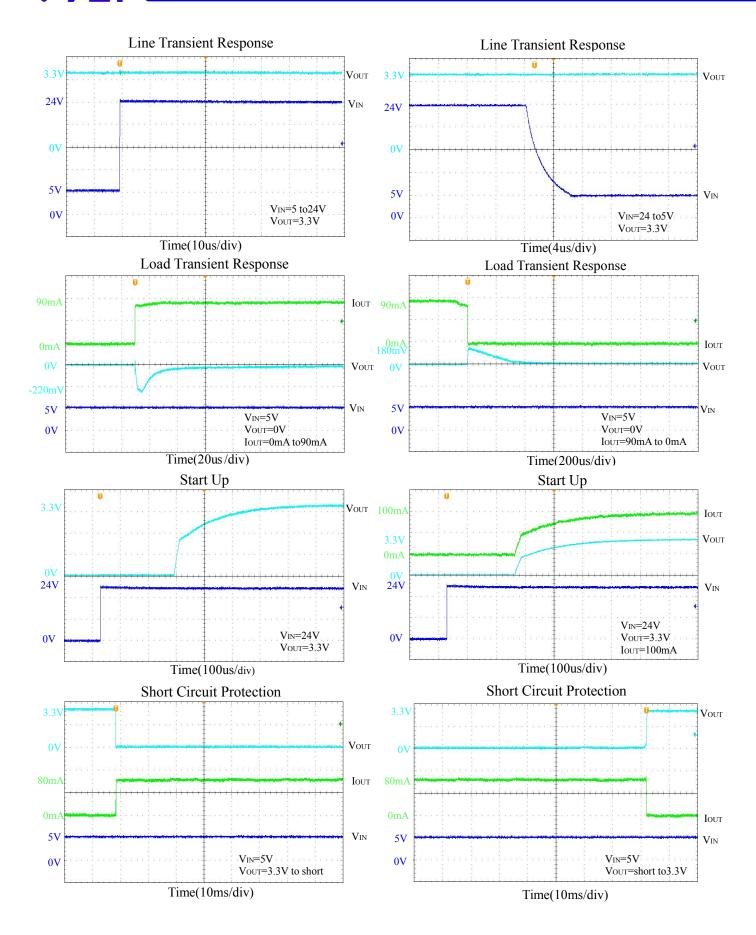

Note: (1) Dropout Voltage is the voltage difference between the input and the output at which the output voltage drops 2% below its nominal value.




■ Typical Performance Characteristics


Test Condition: T_A=25°C,Vin=12V,I_{OUT}=1mA, C_{OUT}=10uF, unless otherwise noted





■ Functional Description

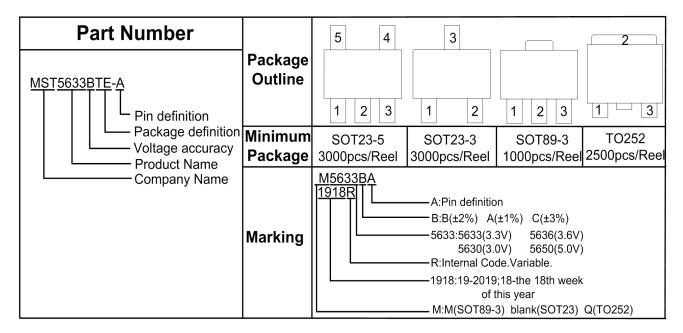
Input Capacitor

A $1\mu F$ ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

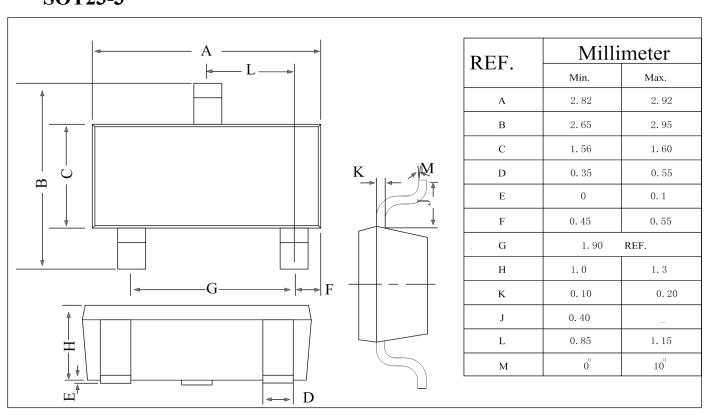
An output capacitor is required for the stability of the LDO. The recommended minimum output capacitance is $1\mu F$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

Current Limit and Short Circuit Protection


When output current at VOUT pin is higher than current limit threshold or the VOUT pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a pre-designed level to prevent over-current and thermal damage.

Thermal Protection

The MST56XXB has internal thermal sense and protection circuits. When excessive power dissipation happens on the device, such as short circuit at the output pin or very heavy load current with a large voltage drop across the device, the internal thermal protection circuit will be triggered, and it will shut down the power MOSFET to prevent the LDO from damage. As soon as excessive thermal condition is removed and the temperature of the device drops down, the thermal protection circuit will lease the control of the power MOSFET, and the LDO device goes to normal operation.


■ Ordering And Marking Information

■ Package Outline Dimensions

SOT23-3

MST

Max.

1.6

0.55

0.48

0.46

4.60

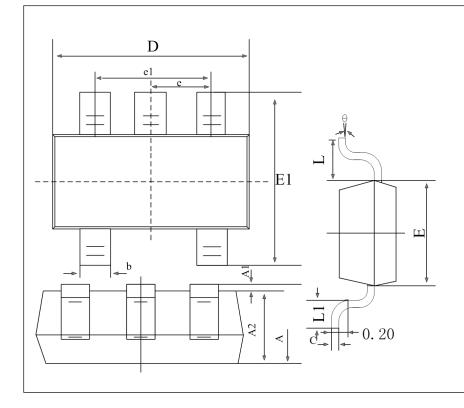
1.80

2.60

4.30

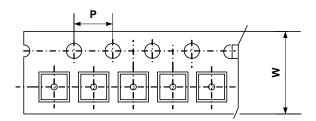
2.00

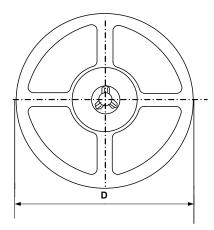
3.05


1.00

0.75

SOT89-3




SOT23-5

REF.	Millimeter		
TCLT.	Min.	Max.	
A	1. 05	1. 25	
A1	0	0. 1	
A2	1. 05	1. 15	
b	0. 3	0. 5	
c	0. 1	0.2	
D	2. 85	3. 05	
Е	1.5	1.7	
E1	2. 65	2. 95	
e	0. 95 (BSC)		
e1	1.8	2. 0	
L	0. 3	0.6	
θ	0°	8°	

■ Packing Information

Type	W(mm)	P(mm)	D(mm)	Qty (pcs)
SOT23-3	8.0±0.1 mm	4.0±0.1 mm	180±1 mm	3000pcs
SOT23-5	8.0±0.1 mm	4.0±0.1 mm	180±1 mm	3000pcs
SOT89-3	12.0±0.1 mm	4.0±0.1 mm	180±1 mm	1000pcs

IMPORTANT NOTICE

MST INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

MST Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. MST Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does MST Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold MST Incorporated and all the companies whose products are represented on MST Incorporated website, harmless against all damages.

MST Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use MST Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold MST Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.