

Enhanced ESD, 3.0 kV rms/5.0 kV rms 150Kbps Dual-Channel Digital Isolators

Data Sheet

$\pi 120U/\pi 121U/\pi 122U$

FEATURES

Ultra-low power consumption (150Kbps): 0.55mA/Channel

High data rate: 150kbps

High common-mode transient immunity: 250 kV/μs High robustness to radiated and conducted noise

Isolation voltages:

 π 12xx3x: AC 3000Vrms π 12xx6x: AC 5000Vrms

High ESD rating:

ESDA/JEDEC JS-001-2017

Human body model (HBM) ±8kV

Safety and regulatory approvals: UL certificate number: E494497

3000Vrms/5000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A

VDE certificate number: 40053041/40052896

DIN VDE V 0884-11:2017-01 V_{IORM} =565V peak/1200V peak

CQC certification per GB4943.1-2011
3 V to 5.5 V level translation

Wide temperature range: -40°C to 125°C

RoHS-compliant, NB SOIC-8, WB SOIC-16 package

APPLICATIONS

General-purpose multichannel isolation Industrial field bus isolation Isolation Industrial automation systems Isolated switch mode supplies Isolated ADC, DAC Motor control supply voltage on either side ranging from 3.0 V to 5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

FUNCTIONAL BLOCK DIAGRAMS

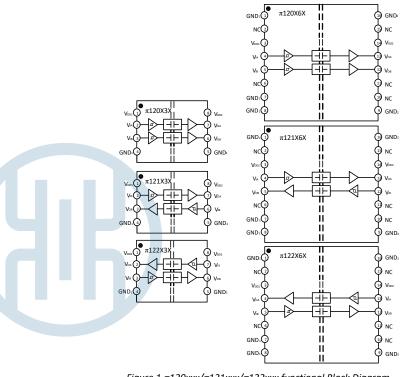


Figure $1.\pi120xxx/\pi121xxx/\pi122xxx$ functional Block Diagram

GENERAL DESCRIPTION

The $\pi1xxxxx$ is a 2PaiSemi digital isolators product family that includes over hundreds of digital isolator products. By using maturated standard semiconductor CMOS technology and 2PaiSemi $iDivider^{@}$ technology, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators.

Intelligent voltage divider technology (*iDivider*® technology) is a new generation digital isolator technology invented by 2PaiSemi. It uses the principle of capacitor voltage divider to transmit voltage signal directly cross the isolator capacitor without signal modulation and demodulation.

The $\pi 1xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide). The devices operate with the

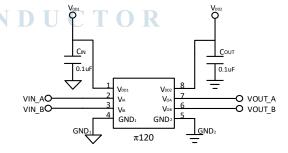


Figure 2. π 120xxx Typical Application Circuit

PIN CONFIGURATIONS AND FUNCTIONS

Table $1.\pi 120U3x$ Pin Function Descriptions

Pin No.	Name	Description						
1	V _{DD1}	Supply Voltage for Isolator Side 1.						
2	VIA	Logic Input A.						
3	VIB	Logic Input B.						
4	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.						
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.						
6	Vов	Logic Output B.						
7	Voa	Logic Output A.						
8	V_{DD2}	Supply Voltage for Isolator Side 2.						

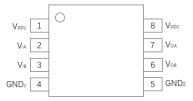


Figure 3. π 120U3x Pin Configuration

Table $2.\pi 121U3x$ Pin Function Descriptions

Pin No.	Name	Description							
1	V _{DD1}	Supply Voltage for Isolator Side 1.							
2	VIA	Logic Input A.							
3	Vов	Logic Output B.							
4	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.							
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.							
6	VIB	Logic Input B.							
7	Voa	Logic Output A.							
8	V _{DD2}	Supply Voltage for Isolator Side 2.							

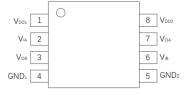


Figure $4.\pi 121U3x$ Pin Configuration

Table $3.\pi122U3x$ Pin Function Descriptions

Pin No.	Name	Description								
1	V_{DD1}	Supply Voltage for Isolator Side 1.								
2	VOA	Logic Output A.								
3	VIB	Logic Input B.								
4	GND_1	Ground 1. This pin is the ground reference for Isolator Side 1.								
5	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.								
6	Vов	Logic Output B.								
7	VIA	Logic Input A.								
8	V_{DD2}	Supply Voltage for Isolator Side 2.								

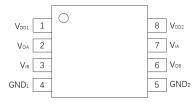


Figure $5.\pi 122U3x$ Pin Configuration

Table $4.\pi120$ U6x Pin Function Descriptions

Pin No.	Name	Description
1	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
2	NC	No connect.
3	V _{DD1}	Supply Voltage for Isolator Side 1.
4	VIA	Logic Input A.
5	VIB	Logic Input B.
6	NC	No Connect.
7	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	NC	No Connect.
11	NC	No Connect.
12	Vов	Logic Output B.
13	Voa	Logic Output A.
14	V_{DD2}	Supply Voltage for Isolator Side 2.
15	NC	No Connect.
16	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.

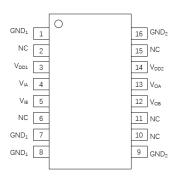


Figure $6.\pi120U6x$ Pin Configuration

SEMICONDUCTO

Table $5.\pi121U6x$ Pin Function Descriptions

Pin No.	Name	Description
1	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
2	NC	No Connect.
3	V _{DD1}	Supply Voltage for Isolator Side 1.
4	VIA	Logic Input A.
5	Vов	Logic Output B.
6	NC	No Connect.
7	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	NC	No Connect.
11	NC	No Connect.
12	VIB	Logic Input B.
13	Voa	Logic Output A.
14	V _{DD2}	Supply Voltage for Isolator Side 2.
15	NC	No Connect.
16	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.

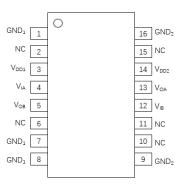


Figure 7. π 121U6x Pin Configuration

Table $6.\pi122U6x$ Pin Function Descriptions

Pin No.	Name	Description
1	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
2	NC	No Connect.
3	V _{DD1}	Supply Voltage for Isolator Side 1.
4	Voa	Logic Output A.
5	VIB	Logic Input B.
6	NC	No Connect.
7	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.
10	NC	No Connect.
11	NC	No Connect.
12	Vов	Logic Output B.
13	VIA	Logic Input A.
14	V _{DD2}	Supply Voltage for Isolator Side 2.
15	NC	No Connect.
16	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.

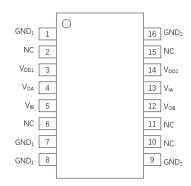


Figure $8.\pi122U6x$ Pin Configuration

DUCTOR

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 7.Absolute Maximum Ratings⁴

Rating	
−0.5 V to +7.0 V	
$-0.5 V$ to $V_{DDx} + 0.5 V$	
$-0.5 \text{ V to V}_{DDx} + 0.5 \text{ V}$	
−10 mA to +10 mA	
-10 mA to +10 mA	
-300 kV/μs to +300 kV/μs	
-65°C to +150°C	
-40°C to +125°C	
	-0.5 V to +7.0 V -0.5 V to V _{DDx} + 0.5 V -0.5 V to V _{DDx} + 0.5 V -10 mA to +10 mA -10 mA to +10 mA -300 kV/µs to +300 kV/µs -65°C to +150°C

Notes

 $^{^{1}}V_{DDx}$ is the side voltage power supply V_{DD} , where x = 1 or 2.

RECOMMENDED OPERATING CONDITIONS

Table 8. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{DDx} ¹	3		5.5	V
High Level Input Signal Voltage	V _{IH}	$0.7*V_{DDx}^{1}$		V_{DDx}^{1}	V
Low Level Input Signal Voltage	V _{IL}	0		$0.3*V_{DDx}^{1}$	V
High Level Output Current	Іон	-6			mA
Low Level Output Current	Іоь			6	mA
Data Rate		0		150	Kbps
Junction Temperature	TJ	-40		150	°C
Ambient Operating Temperature	T _A	-40		125	°C

Notes:

Truth Tables

Table $9.\pi120xxx/\pi121xxx/\pi122xxx$ Truth Table

V _{Ix} Input ¹	V _{DDI} State ¹	V State1	Default Low	Default High	Test Conditions	
Vix Input-	V _{DDI} State-	V _{DDO} State ¹	Vox Output ¹	Vox Output ¹	/Comments	
Low	Powered ²	Powered ²	Low	Low	Normal operation	
High	Powered ²	Powered ²	High	High	Normal operation	
Open	Powered ²	Powered ²	Low	High	Default output	
Don't Care⁴	Unpowered ³	Powered ²	Low	High	Default output⁵	
Don't Care⁴	Powered ²	Unpowered ³	High Impedance	High Impedance		

Notes:

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Table 10.π12xU3x Switching Specifications

 V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} ±10% or 5 V_{DC} ±10%, T_A =25°C, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum Pulse Width	PW			6.5	us	Within pulse width distortion (PWD) limit
Maximum Data Rate		150			Kbps	Within PWD limit
			3.0	4.5	us	@ 5V _{DC} supply
Propagation Delay Time ¹	t рнь, t рьн		3.2	4.8	us	@ 3.3V _{DC} supply
Pulse Width Distortion	PWD	0	0.02	0.2	us	The max different time between t_{pHL} and t_{pLH} @ $5V_{DC}$ supply. And The value is $\mid t_{pHL} - t_{pLH} \mid$
raise what distortion	TWD	0	0.02	0.2	us	The max different time between tphL and tpLH@ 3.3VDC supply. And The value is tphL - tpLH

² See Figure 9 for the maximum rated current values for various temperatures.

³ See Figure 16 for Common-mode transient immunity (CMTI) measurement.

⁴ Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

 $^{^{1}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

¹ V_{Ix}/V_{Ox} are the input/output signals of a given channel (A or B). V_{DDI}/V_{DDO} are the supply voltages on the input/output signal sides of this given channel.

² Powered means V_{DDx}≥ 2.95 V

³ Unpowered means V_{DDx} < 2.30V

⁴ Input signal (V_{Ix}) must be in a low state to avoid powering the given V_{DD} ¹ through its ESD protection circuitry.

⁵ If the V_{DDI} goes into unpowered status, the channel outputs the default logic signal after around 1us. If the V_{DDI} goes into powered status, the channel outputs the input status logic signal after around 3us.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Output Signal Rise/Fall Time ⁴	t _r /t _f		1.5		ns	See Figure 13.
Common-Mode Transient Immunity ³	CMTI	250			kV/μs	$V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000$ V.
ESD(HBM - Human body model)	ESD		±8		kV	

Notes:

Table $11.\pi12xU6x$ Switching Specifications

 V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} ±10% or 5 V_{DC} ±10%, T_A =25°C, unless otherwise noted.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Minimum Pulse Width	PW			6.5	us	Within pulse width distortion (PWD) limit
Maximum Data Rate		150			Kbps	Within PWD limit
Programation Polos Times 1			2.5	4.5	us	@ 5V _{DC} supply
Propagation Delay Time ¹	t _{pHL} , t _{pLH}		2.7	4.8	us	@ 3.3V _{DC} supply
Pulse Width Distortion	PWD	0	0.02	0.2	us	The max different time between tphL and tpLH@ 5VDC supply. And The value is tphL - tpLH
ruse width bistortion		0	0.02	0.2	us	The max different time between tphL and tplH@ 3.3Vpc supply. And The value is tpHL - tplH
Output Signal Rise/Fall Time ⁴	t _r /t _f		1.5		ns	See Figure 13.
Common-Mode Transient Immunity ³	СМТІ	250	V		kV/μs	$V_{IN} = V_{DDx}^2$ or 0V, $V_{CM} = 1000$ V.
ESD(HBM - Human body model)	ESD		±8		kV	

Notes:

Table 12.DC Specifications

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3 V_{DC} \pm 10\% \ or \ 5 V_{DC} \pm 10\%, \ T_A = 25 ^{\circ}C, \ unless \ otherwise \ noted.$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Rising Input Signal Voltage Threshold	V _{IT+}		0.6*V _{DDx} ¹	0.7*V _{DDx} 1	V	
Falling Input Signal Voltage Threshold	V _{IT} -	0.3* V _{DDX} ¹	0.4* V _{DDX} ¹		V	
High Level Output Voltage	Von ¹	V _{DDx} - 0.1	V_{DDx}		V	-20 μA output current
High Level Output Voltage	V OH -	V _{DDx} - 0.2	V _{DDx} - 0.1		V	-2 mA output current
Low Level Output Voltage	Vol		0	0.1	V	20 μA output current
Low Level Output Voltage	VOL		0.1	0.2	V	2 mA output current
Input Current per Signal Channel	I _{IN}	-10	0.5	10	μΑ	0 V ≤ Signal voltage ≤ V _{DDX} ¹
V _{DDx} ¹ Undervoltage Rising Threshold	V _{DDxUV+}	2.45	2.75	2.95	V	
V _{DDx} ¹ Undervoltage Falling Threshold	V _{DDxUV} -	2.30	2.60	2.75	V	
V _{DDx} ¹ Hysteresis	V _{DDxUVH}		0.15		V	

Notes:

 $^{^{1}}$ t_{pLH} = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See Figure 14.

 $^{^{2}}$ V_{DDx} is the side voltage power supply V_{DD}, where x = 1 or 2.

³ See Figure 16 for Common-mode transient immunity (CMTI) measurement.

⁴t_r means is the time from 10% amplitude to 90% amplitude of the rising edge of the signal, t_f means is the time from 90% amplitude to 10% amplitude of the falling edge of the signal.

 $^{^{1}}t_{\text{pLH}}$ = low-to-high propagation delay time, t_{pHL} = high-to-low propagation delay time. See Figure 14.

 $^{^{2}}V_{DDx}$ is the side voltage power supply V_{DD} , where x = 1 or 2.

³See Figure 16 for Common-mode transient immunity (CMTI) measurement.

 $^{^4}t_r$ means is the time from 10% amplitude to 90% amplitude of the rising edge of the signal, t_f means is the time from 90% amplitude to 10% amplitude of the falling edge of the signal.

 $^{^{1}}$ V_{DDx} is the side voltage power supply $V_{\text{DD}}\text{,}\ \text{where}\ x$ = 1 or 2.

Table 13.Quiescent Supply Current

 $\label{eq:vdd} \underline{V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3V_{DC} \pm 10\% \ or \ 5V_{DC} \pm 10\%, \ T_A = 25^{\circ}C, \ C_L = 0 \ pF, \ unless \ otherwise \ noted.}$

	V _{DD2} - V _{GND2} - 3.3 V _{DC}					Test Co	onditions
Part	Symbol	Min	Тур	Max	Unit	Supply voltage	Input signal
	I _{DD1} (Q)	0.15	0.19	0.25	mA		VI=0V for π12xUx1
	Idd2 (Q)	0.71	0.89	1.15	mA	5V _{DC}	VI=5V for π12xUx0
	Idd1 (Q)	0.06	0.08	0.10	mA	3.000	VI=5V for π12xUx1
π120U3x	Idd2 (Q)	0.77	0.96	1.25	mA		VI=0V for π12xUx0
niloosk	Idd1 (Q)	0.11	0.14	0.18	mA		VI=0V for π12xUx1
	I _{DD2} (Q)	0.70	0.87	1.13	mA	3.3V _{DC}	VI=3.3V for π12xUx0
	Idd1 (Q)	0.06	0.08	0.10	mA	0.0.100	VI=3.3V for π 12xUx1
	I _{DD2} (Q)	0.76	0.95	1.23	mA		VI=0V for π12xUx0
	IDD1 (Q)	0.43	0.54	0.70	mA		VI=0V for π12xUx1
	IDD2 (Q)	0.43	0.54	0.70	mA	5V _{DC}	VI=5V for π12xUx0
	IDD1 (Q)	0.41	0.52	0.67	mA		VI=5V for π12xUx1
π121U3x	IDD2 (Q)	0.41	0.52	0.67	mA		VI=0V for π12xUx0
	Idd1 (Q)	0.40	0.51	0.66	mA		VI=0V for π12xUx1
	IDD2 (Q)	0.41	0.51	0.66	mA	3.3V _{DC}	VI=3.3V for π12xUx0
	IDD1 (Q)	0.41	0.51	0.67	mA		VI=3.3V for π12xUx1
	IDD2 (Q)	0.41	0.51	0.67	mA		VI=0V for π12xUx0
	IDD1 (Q)	0.43	0.54	0.70	mA		VI=0V for π12xUx1
	IDD2 (Q)	0.43	0.54	0.70	mA	5V _{DC}	VI=5V for π12xUx0
	IDD1 (Q)	0.41	0.52	0.67	mA		VI=5V for π12xUx1
π122U3x	IDD2 (Q)	0.41	0.52	0.67	mA		VI=0V for π12xUx0
	IDD1 (Q)	0.41	0.51	0.66	mA m A		VI=0V for π12xUx1
	IDD2 (Q)	0.41	0.51	0.66 0.67	mA	$3.3V_{DC}$	VI=3.3V for π12xUx0
	IDD1 (Q)	0.41 0.41	0.51 0.51	0.67	mA		VI=3.3V for π 12xUx1 VI=0V for π 12xUx0
	IDD2 (Q)	0.41	0.34	0.67	mA mA		
	Idd1 (Q) Idd2 (Q)	0.13	1.08	1.40	mA		VI=0V for π 12xUx1 VI=5V for π 12xUx0
	IDD2 (Q)	0.06	0.11	0.14	mA	5V _{DC}	VI=5V for π12xUx1
	IDD2 (Q)	0.77	1.16	1.52	mA		VI=0V for π12xUx0
π120U6x	IDD1 (Q)	0.11	0.22	0.28	mA T	O D	VI=0V for π12xUx1
	IDD2 (Q)	0.70	1.04	1.35	mA	O R	VI=3.3V for π12xUx0
	I _{DD1} (Q)	0.06	0.10	0.12	mA	3.3V _{DC}	VI=3.3V for π12xUx1
	I _{DD2} (Q)	0.76	1.13	1.46	mA		VI=0V for π 12xUx0
	I _{DD1} (Q)	0.43	0.67	0.87	mA		VI=0V for π12xUx1
	I _{DD2} (Q)	0.43	0.67	0.87	mA		VI=5V for π12xUx0
	I _{DD1} (Q)	0.41	0.60	0.78	mA	5V _{DC}	VI=5V for π12xUx1
	I _{DD2} (Q)	0.41	0.60	0.78	mA		VI=0V for π12xUx0
π121U6x	I _{DD1} (Q)	0.40	0.59	0.77	mA		VI=0V for π12xUx1
	I _{DD2} (Q)	0.41	0.59	0.77	mA	2 2) /	VI=3.3V for π12xUx0
	I _{DD1} (Q)	0.41	0.58	0.75	mA	3.3V _{DC}	VI=3.3V for π12xUx1
	Idd2 (Q)	0.41	0.58	0.75	mA		VI=0V for π12xUx0
	IDD1 (Q)	0.43	0.67	0.87	mA		VI=0V for π12xUx1
	I _{DD2} (Q)	0.43	0.67	0.87	mA	5V _{DC}	VI=5V for π12xUx0
π122U6x	Idd1 (Q)	0.41	0.60	0.78	mA	⊃ ∧ DC	VI=5V for π12xUx1
NTZZOQX	I _{DD2} (Q)	0.41	0.60	0.78	mA		VI=0V for π12xUx0
	Idd1 (Q)	0.41	0.59	0.77	mA	3 3\/	VI=0V for π12xUx1
	IDD2 (Q)	0.41	0.59	0.77	mA	3.3V _{DC}	VI=3.3V for π12xUx0

Data Sheet

Part	Symbol	Min	Tvn	Max	Unit	Test Co	nditions
Fait	Symbol	IVIIII	Тур	IVIAX	Oilit	Supply voltage	Input signal
	I _{DD1} (Q)	0.41	0.58	0.75	mA		VI=3.3V for π12xUx1
	I DD2 (Q)	0.41	0.58	0.75	mA		VI=0V for π12xUx0

Table 14.Total Supply Current vs. Data Throughput (CL = 0 pF)

 $V_{DD1} - V_{GND1} = V_{DD2} - V_{GND2} = 3.3V_{DC} \pm 10\%$ or $5V_{DC} \pm 10\%$, $T_A = 25^{\circ}$ C, $C_L = 0$ pF, unless otherwise noted.

	Symbol	2 Kb _l			50Kbps		150Kbps		Unit	Supply
Part	Symbol	Min Typ	Max	Min	Тур	Max	Min Typ	Max	Unit	voltage
	I _{DD1}	0.13	0.20		0.13	0.20	0.13	0.20	mA	5V _{DC}
~120H2v	I _{DD2}	0.92	1.38		0.93	1.40	0.94	1.41	IIIA	J V DC
π120U3x	I _{DD1}	0.10	0.15		0.10	0.15	0.10	0.15	mA	2 2)/
	I _{DD2}	0.91	1.37		0.91	1.37	0.92	1.38	IIIA	3.3V _{DC}
	I _{DD1}	0.53	0.79		0.53	0.80	0.54	0.80	A	E)/
~121U2v	I _{DD2}	0.53	0.80		0.53	0.80	0.54	0.81	mA	5V _{DC}
π121U3x	I _{DD1}	0.51	0.76		0.51	0.77	0.51	0.77	m A	2 2)/
	I _{DD2}	0.51	. 0.77		0.51	0.77	0.51	0.77	mA	3.3V _{DC}
	I _{DD1}	0.53	0.80		0.53	0.80	0.54	0.81	mA	5V _{DC}
π122U3x	I _{DD2}	0.53	0.80		0.53	0.80	0.54	0.81	IIIA	2 V DC
7L122U3X	I _{DD1}	0.51	. 0.77		0.51	0.77	0.51	0.77	mA	3.3V _{DC}
	I _{DD2}	0.51	. 0.77		0.51	0.77	0.51	0.77	IIIA	3.3V _{DC}
	I _{DD1}	0.21	0.31		0.21	0.31	0.21	0.32	mA	5V _{DC}
~120U6v	I _{DD2}	1.07	1.61		1.08	1.62	1.09	1.63	IIIA	3 V DC
π120U6x	I _{DD1}	0.15	0.23		0.15	0.23	0.15	0.23	mA	3.3V _{DC}
	I _{DD2}	1.05	1.57		1.05	1.57	1.05	1.58	IIIA	3.3V _{DC}
	I _{DD1}	0.73	1.10		0.76	1.14	0.79	1.18	m A	E)/
π121U6x	I _{DD2}	0.73	1.10		0.76	1.14	0.79	1.18	mA	5V _{DC}
HIZIOOX	I _{DD1}	0.65	0.97		0.66	0.99	0.69	1.03	mΛ	3.3V _{DC}
	I _{DD2}	0.65	0.97		0.66	0.99	0.69	1.03	mA	3.3VDC
	I _{DD1}	4 0.73	1.10		0.76	1.14	0.79	1.18	mA 5V _{DC}	51/
#122U6v	I _{DD2}	0.73	1.10		0.76	1.14	0.79	1.18		
π122U6x	I _{DD1}	0.65	0.97		0.66	0.99	0.69	1.03		2 21/
	I _{DD2}	0.65	0.97		0.66	0.99	0.69	1.03	mA	3.3V _{DC}

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 15.Insulation Specifications

Parameter	Symbol	Va	lue	Unit	Test Conditions/Comments
raidilletei	Syllibol	π12xU3x	π12xU6x	Oilit	rest conditions/comments
Rated Dielectric Insulation Voltage		3000	5000	V rms	1-minute duration
Minimum External Air Gap	L (CLR)	≥4	≥8	mm	Measured from input terminals to output terminals,
(Clearance)	L (CLK)	24	20	mm	shortest distance through air
Minimum External Tracking	L (CRP)	≥4	≥8	mm	Measured from input terminals to output terminals,
(Creepage)	L (CRP)	24	20	mm	shortest distance path along body
Minimum Internal Gap (Internal		≥11	\ 21		Insulation distance through insulation
Clearance)		211	≥21	μm	Insulation distance through insulation

Data Sheet

Parameter	Symbol	Value		Unit	Test Conditions/Comments	
raidilletei	Syllibol	π12xU3x	π12xU6x	Oilit	rest conditions/ comments	
Tracking Resistance (Comparative	СТІ	>400	>400	V	DIN EN 60112 (VDE 0303-11):2010-05	
Tracking Index)	CII	Z400	Z400	V	DIN EN 00112 (VDE 0303-11).2010-03	
Material Group		II	II		IEC 60112:2003 + A1:2009	

PACKAGE CHARACTERISTICS

Table 16.Package Characteristics

Parameter	Symbol	Туріса	Typical Value		Test Conditions/Comments	
rarameter	Syllibol	π12xU3x	π12xU6x	Unit	rest conditions/ comments	
Resistance (Input to Output) ¹	Rıo	10 ¹¹	10 ¹¹	Ω		
Capacitance (Input to Output) ¹	Сю	1.5	1.5	pF	@1MHz	
Input Capacitance ²	Cı	3	3	pF	@1MHz	
IC Junction to Ambient Thermal	θја	100	45	°C/W	Thermocouple located at center of	
Resistance	OJA	100	45	C/W	package underside	

Notes:

REGULATORY INFORMATION

See Table 17 for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels. Table 17.Regulatory

Regulatory	π12xU3x	π12xU6x
	Recognized under UL 1577	Recognized under UL 1577
	Component Recognition Program ¹	Component Recognition Program ¹
UL	Single Protection, 3000 V rms Isolation Voltage	Single Protection, 5000V rms Isolation Voltage
	File (E494497)	File (E494497)
	DIN VDE V 0884-11:2017-01 ²	DIN VDE V 0884-11:2017-01 ²
VDE	Basic insulation, V _{IORM} = 565V peak, V _{IOSM} = 3615 V peak	Basic insulation, V _{IORM} = 1200 V peak, V _{IOSM} = 5000 V peak
	File (40053041)	File (40052896)
	Certified under CQC11-471543-2012 and GB4943.1-2011	Certified under CQC11-471543-2012 and GB4943.1-2011
cqc	Basic insulation at 500 V rms (707 V peak) working voltage	Basic insulation at 845 V rms (1200 V peak) working voltage
cqc	NB SOIC-8 File (CQC20001260211)	Reinforced insulation at 422 V rms (600 V peak) WB SOIC-16 File (CQC20001260258)

Notes:

DIN V VDE V 0884-11 (VDE V 0884-11) INSULATION CHARACTERISTICS

Table 18.VDE Insulation Characteristics

Description	Test Conditions/Comments	Symbol	Charac	teristic	Unit
Description	rest conditions/comments	Зуппон	π12xU3x	π12xU6x	Offic
Installation Classification per DIN VDE 0110					
For Rated Mains Voltage ≤ 150 V rms			I to IV	I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	I to III	
For Rated Mains Voltage ≤ 400 V rms			I to III	I to III	
Climatic Classification			40/125/21	40/125/21	
Pollution Degree per DIN VDE 0110, Table 1			2	2	
Maximum repetitive peak isolation voltage		Viorm	565	1200	V peak

¹The device is considered a 2-terminal device; Short-circuit all terminals on the VDD1 side as one terminal, and short-circuit all terminals on the VDD2 side as the other terminal.

²Testing from the input signal pin to ground.

¹ In accordance with UL 1577, each π 120U3x/ π 121U3x/ π 122U3x is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec; each π 120U6x/ π 121U6x/ π 122U6x is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec

² In accordance with DIN V VDE V 0884-11, each π 120U3x/ π 121U3x/ π 122U3x is proof tested by applying an insulation test voltage ≥ 848 V peak for 1 sec (partial discharge detection limit = 5 pC); each π 120U6x/ π 121U6x/ π 122U6x is proof tested by ≥ 1800V peak for 1 sec.

December 1	Test Conditions (Comments	Comple el	Charac	teristic	I I mith
Description	Test Conditions/Comments	Symbol	π12xU3x	π12xU6x	Unit
	$V_{IORM} \times 1.5 = V_{pd (m)}$, 100% production				
Input to Output Test Voltage, Method B1	test, t _{ini} = t _m = 1 sec, partial discharge <	V _{pd (m)}	848	1800	V peak
	5 pC				
Input to Output Test Voltage, Method A					
After Environmental Tests Subgroup 1	$V_{IORM} \times 1.3 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	V _{pd} (m)	735	1560	V peak
After Input and/or Safety Test Subgroup 2	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$	V	678	1440	\/ nook
and Subgroup 3	sec, partial discharge < 5 pC	V _{pd} (m)	0/8	1440	V peak
Highest Allowable Overvoltage		Vютм	4200	7071	V peak
	Basic insulation, 1.2/50 μs combination				
Surge Isolation Voltage Basic	wave, VTEST = 1.3 × VIOSM	Viosm	3615	5000	V peak
	(qualification) ¹				
Cofety Limiting Values	Maximum value allowed in the event of				
Safety Limiting Values	a failure (see Figure 9)				
Maximum safety Temperature		Ts	150	150	°C
Maximum Power Dissipation at 25°C		Ps	1.25	2.78	W
Insulation Resistance at T _S	V _{IO} = 500 V	R_S	>109	>10 ⁹	Ω

Typical Thermal Characteristic

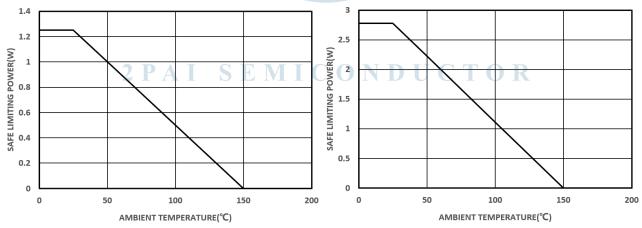
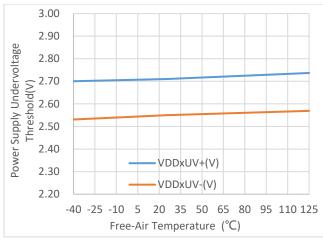



Figure 9. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per VDE (left: π 12xU3x; right: π 12xU6x)

Notes:

¹In accordance with DIN V VDE V 0884-11, $\pi1xxx3x$ is proof tested by applying a surge isolation voltage 4700 V, $\pi1xxx6x$ is proof tested by applying a surge isolation voltage

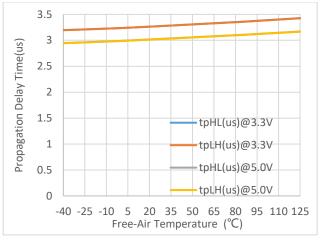


Figure 10.UVLO vs. Free-Air Temperature

Figure 11. π 12xU3x Propagation Delay Time vs. Free-Air Temperature

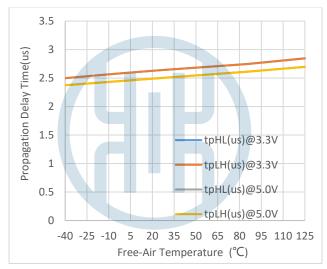


Figure 12. π12xU6x Propagation Delay Time vs. Free-Air Temperature

2 PAI SEMICONDUCTOR

Timing test information

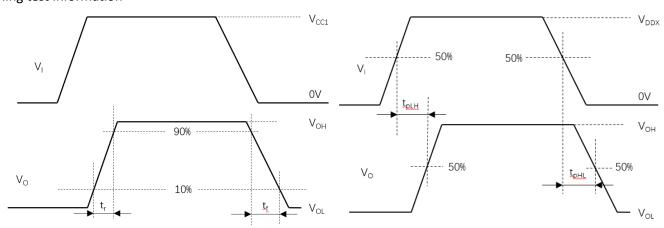


Figure 13.Transition time waveform measurement

Figure 14. Propagation delay time waveform measurement

APPLICATIONS INFORMATION

OVERVIEW

The $\pi 1 \times \times \times \times \times$ are 2PaiSemi digital isolators product family based on 2PaiSemi unique *iDivider*® technology. Intelligent voltage **Divider** technology (*iDivider*® technology) is a new generation digital isolator technology invented by 2PaiSemi. It uses the principle of capacitor voltage divider to transmit signal directly cross the isolator capacitor without signal modulation and demodulation. Compare to the traditional Opto-couple technology, icoupler technology, OOK technology, *iDivider*® is a more essential and concise isolation signal transmit technology which leads to greatly simplification on circuit design and therefore significantly improves device performance, such as lower power consumption, faster speed, enhanced anti-interference ability, lower noise.

By using maturated standard semiconductor CMOS technology and the innovative *iDivider*® design, these isolation components provide outstanding performance characteristics and reliability superior to alternatives such as optocoupler devices and other integrated isolators. The $\pi1xxxxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 1.5 kV rms to 5.0 kV rms and the data rate from DC up to 600Mbps (see the Ordering Guide).

The $\pi 120Uxx/\pi 121Uxx/\pi 122Uxx$ are the outstanding 150Kbps dual-channel digital isolators with the enhanced ESD capability. the devices transmit data across an isolation barrier by layers of silicon dioxide isolation.

The devices operate with the supply voltage on either side ranging from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The $\pi120\text{Uxx}/\pi121\text{Uxx}/\pi122\text{Uxx}$ have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the fail-safe output state of low or high.

PCB LAYOUT

The low-ESR ceramic bypass capacitors must be connected between V_{DD1} and GND_1 and between V_{DD2} and GND_2 . The bypass capacitors are placed on the PCB as close to the isolator device as possible. The recommended bypass capacitor value is between 0.1 μF and 10 μF . The user may also include resistors (50–300 Ω) in series with the inputs and outputs if the system is excessively noisy, or in order to enhance the anti ESD ability of the system.

Avoid reducing the isolation capability, Keep the space underneath the isolator device free from metal such as planes, pads, traces and vias.

To minimize the impedance of the signal return loop, keep the solid ground plane directly underneath the high-speed signal path, the closer the better. The return path will couple between the nearest

ground plane to the signal path. Keep suitable trace width for controlled impedance transmission lines interconnect.

To reduce the rise time degradation, keep the length of input/output signal traces as short as possible, and route low inductance loop for the signal path and It's return path.

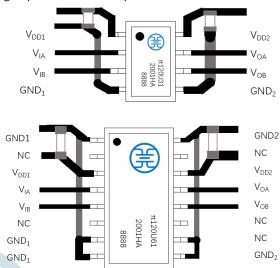
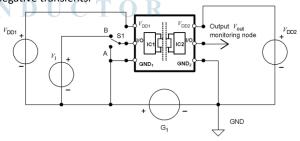
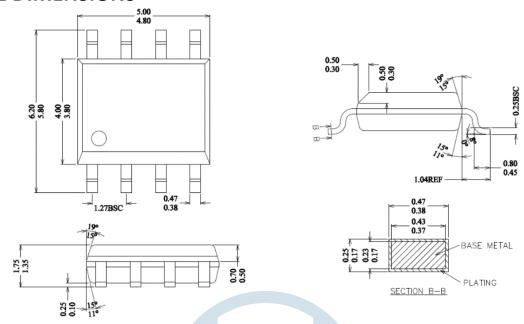
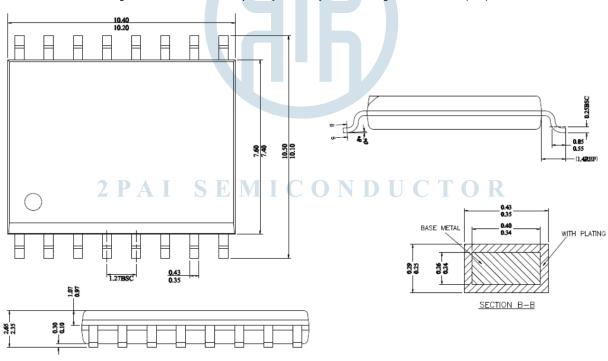


Figure 15. Recommended Printed Circuit Board Layout

CMTI MEASUREMENT

To measure the Common-Mode Transient Immunity (CMTI) of $\pi1xxxxx$ isolator under specified common-mode pulse magnitude (VCM) and specified slew rate of the common-mode pulse (dVCM/dt) and other specified test or ambient conditions, The common-mode pulse generator (G1) will be capable of providing fast rise and fall pulses of specified magnitude and duration of the common-mode pulse (VCM),such that the maximum common-mode slew rates (dVCM/dt) can be applied to $\pi1xxxxx$ isolator coupler under measurement. The common-mode pulse is applied between one side ground GND1 and the other side ground GND2 of $\pi1xxxxx$ isolator, and shall be capable of providing positive transients as well as negative transients.


Figure 16. Common-mode transient immunity (CMTI) measurement

OUTLINE DIMENSIONS

NOTES: ALL DIMENSIONS REFER TO JEDEC STANDARD MS-012 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSION.

Figure 17. 8-Lead Narrow Body SOIC [NB SOIC-8] Outline Package —dimension unit(mm)

NOTES:

ALL DIMENSIONS MEET JEDEC STANDARD MS-013 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

Figure 18.16-Lead Wide Body Outline Package [16-Lead SOIC_W] –dimension unit(mm)

Land Patterns

8-Lead Narrow Body SOIC [NB SOIC-8]

The figure below illustrates the recommended land pattern details for the $\pi 1xxxxx$ in an 8-pin narrow-body SOIC. The table below lists the values for the dimensions shown in the illustration.

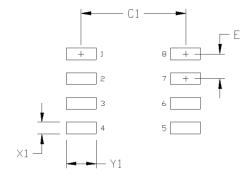


Figure 19.8-Lead Narrow Body SOIC [NB SOIC-8] Land Pattern

Table 19.8-Lead Narrow Body SOIC Land Pattern Dimensions

Dimension	Feature	Parameter	Unit
C1	Pad column spacing	5.40	mm
E	Pad row pitch	1.27	mm
X1	Pad width	0.60	mm
Y1	Pad length	1.55	mm

Note:

- 1. This land pattern design is based on IPC -7351.
- 2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

16-Lead Wide Body SOIC [WB SOIC-16]

The figure below illustrates the recommended land pattern details for the $\pi 1xxxxx$ in a 16-pin wide-body SOIC package. The table lists the values for the dimensions shown in the illustration.

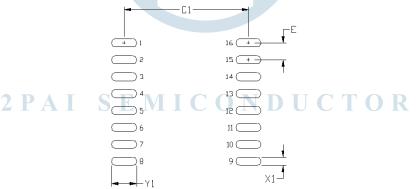


Figure 20.16-Lead Wide Body SOIC [WB SOIC-16] Land Pattern

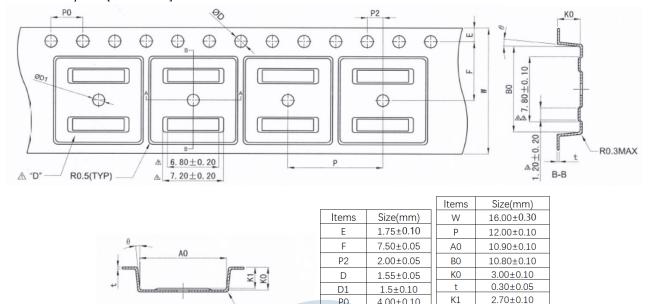
Table 20. 16-Lead Wide Body SOIC [WB SOIC-16] Land Pattern Dimensions

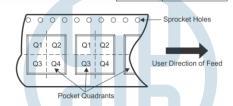
Dimension	Feature	Parameter	Unit
C1	Pad column spacing	9.40	mm
Е	Pad row pitch	1.27	mm
X1	Pad width	0.60	mm
Y1	Pad length	1.90	mm

Note:

- 1. This land pattern design is based on IPC -7351
- 2.All feature sizes shown are at maximum material condition and a card fabrication tolerance of 0.05 mm is assumed.

Top Marking


Line 1	πxxxxxx=Product name
Line 2	YY = Work Year
	WW = Work Week
	ZZ=Manufacturing code from assembly house
Line 3	XXXXX, no special meaning


REEL INFORMATION 8-Lead Narrow Body SOIC [NB SOIC-8] 2±0.05 0.3±0.05-1.75±0.1 5.5±0.05 12±0.3 5.5±0.1 Section A-A' 2 PAI (1.7)_{2.1±0.1} ALL DIMS IN MM 6.6±0.1 -Sprocket Holes Q1 Q2 Q1 Q2 Q4 Pocket Quadrants

Note: The Pin 1of the chip is in the quadrant Q1

Figure 21. 8-Lead Narrow Body SOIC [NB SOIC-8] REEL INFORMATION—dimension unit(mm)

16-Lead Wide Body SOIC [WB SOIC-16]

R0.3MAX

A-A

Note: The Pin 1of the chip is in the quadrant Q1

P0

10P0

4.00±0.10

40.00±0.20

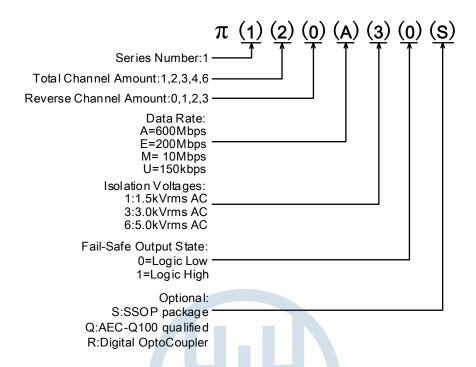
5° TYP

Figure 22. 16-Lead Wide Body SOIC [WB SOIC-16] REEL INFORMATION

ORDERING GUIDE

Table 21. ORDERING GUIDE

Model Name ¹	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Isolation Rating (kV rms)	Fail-Safe Output State	Package	MSL Peak Temp ²	MOQ/ Quantity per reel ³
π120U31	-40~125°C	2	0	3	High	NB SOIC-8	Level-2-260C-1 YEAR	4000
π 120U30	-40~125°C	2	0	3	Low	NB SOIC-8	Level-2-260C-1 YEAR	4000
π121U31	-40~125°C	1	1	3	High	NB SOIC-8	Level-2-260C-1 YEAR	4000
π 121U30	-40~125°C	1	1	3	Low	NB SOIC-8	Level-2-260C-1 YEAR	4000
π122U31	-40~125°C	1	1	3	High	NB SOIC-8	Level-2-260C-1 YEAR	4000
π 122U30	-40~125°C	1	1	3	Low	NB SOIC-8	Level-2-260C-1 YEAR	4000
π120U61	-40~125°C	2	0	5	High	WB SOIC-16	Level-2-260C-1 YEAR	1500
π 120U60	-40~125°C	2	0	5	Low	WB SOIC-16	Level-2-260C-1 YEAR	1500
π121U61	-40~125°C	1	1	5	High	WB SOIC-16	Level-2-260C-1 YEAR	1500
π 121U60	-40~125°C	1	1	5	Low	WB SOIC-16	Level-2-260C-1 YEAR	1500
π122U61	-40~125°C	1	1	5	High	WB SOIC-16	Level-2-260C-1 YEAR	1500
π122U60	-40~125°C	1	1	5	Low	WB SOIC-16	Level-2-260C-1 YEAR	1500


Note:

^{1.} Pai1xxxxx is equals to π 1xxxxx in the customer BOM

^{2.} MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

^{3.} MOQ, minimum ordering quantity.

PART NUMBER NAMED RULE

Notes:

Pai1xxxxx is equals to π 1xxxxx in the customer BOM

IMPORTANT NOTICE AND DISCLAIMER

2PaiSemi intends to provide customers with the latest, accurate, and in-depth documentation. However, no responsibility is assumed by 2PaiSemi for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Characterization data, available modules, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. 2PaiSemi reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. 2PaiSemi shall have no liability for the consequences of use of the information supplied herein.

Trademarks and registered trademarks are the property of their respective owners. This document does not imply, or express copyright licenses granted hereunder to design or fabricate any integrated circuits.

Room 307-309, No.22, Boxia Road, Pudong New District, Shanghai, 201203, China 021-50850681

2Pai Semiconductor Co., Limited. All rights reserved.

http://www.rpsemi.com/

REVISION HISTORY

Revision	Date	Page	Change Record			
1.0	2018/09/17	All	Initial version			
1.1	2018/11/28	P11	Changed the recommended bypass capacitor value.			
1.2	2019/09/08	Page1	Changed the contact address. Add <i>iDivider</i> technology description in General Description. Changed propagation delay time, CMTI and HBM ESD. Added WB SOIC-16 Lead information.			
1.3	2019/12/20	Page1,11,14	Changed description of π1xxx6x.			
1.4	2020/02/16	Page1	Changed propagation delay time.			
1.5	2020/02/25	Page5	Changed Pulse Width Distortion.			
1.6	2020/03/16	Page6	Changed VDDx Undervoltage Threshold and Regulatory Information. Added information of Land Patterns and Top Marking			
1.7	2020/04/16	Page12	Optimize description and format to make it consistent with the Chinese version			
1.8	2021/05/17	Page 1,5~10	Changed Regulatory Information. Added propagation delay time and supply current of $\pi 1xxU6x$.			
1.9	2021/12/06	Page14,15	Changed Top Marking Information. Changed MSL Peak Temp.			

2 PAI SEMICONDUCTOR