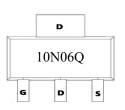


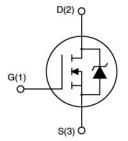
Features

- ➤ Super Low Gate Charge
- ➤ Green Device Available
- > Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology


Bvdss	Rdson	ID
60V	40mΩ	10A

Application

- ➤ PWM applications
- ➤ Load Switch
- ➤ Power management


Package

SOT89-3L top view

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Quantity
10N06	10N06Q	SOT89-3L	1000

Absolute Maximum Ratings

Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	60	V
Gate-Source Voltage		V _G s	±20	V
	Tc = 25°C		10	A
Continuous Drain Current	Tc= 100°C	lo	6.8	А
Pulsed Drain Current ¹		Ілм	30	Α
Single Pulse Avalanche Energy ²		Eas	6.3	mJ
Total Power Dissipation ⁴	Tc = 25℃	P _D	4	W
Operating and Storage Temperature F	Range	Тյ, Тѕтс	-55 to +175	$^{\circ}$

Thermal Resistance Ratings

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction to Ambient ³	Reja			°C/W
Thermal Resistance Junction-case	Rejc		63	°C/W

Ordering Information

Ordering Number	Package	Pin Assignment Packing			
Halogen Free		G	D	S	
10N06Q	SOT89-3L	1	2	3	Tape Reel

Electrical Characteristics (T_j=25°C unless otherwise noted)

Parameter	Symbo	ol	Conditions		Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	B _{VDS}	is	In=250uA,Vgs=0	VC	60			V
			V _{GS} =10V , I _D =15A			40	49	
Static Drain-Source On-Resistance ³	R _{DS(ON}	۷)	V _{GS} =4.5V , I _D =1	0A		45	63	mΩ
Gate Threshold Voltage	V _{GS(t}	th)	V _{GS} =V _{DS} , I _D =250	OuA	1	1.6	2.5	V
Zero Gate Voltage Drain Current	I _{DSS}	3	V _{DS} =60V, V _{GS} =0	ΟV			1.0	uA
Gate to Body Leakage Current	I _{GSS}	5	V_{GS} = $\pm 20 V$, V_{DS}	=0V			±100	nA
Total Gate Charge	Q _G					14		
Gate-Source Charge	Q _{GS}	5	Vgs=10V, Vbs=30V, lb=4.5A			2.9		nC
Gate-Drain Charge	Qgd	t				5.2		
Turn-On Delay Time	T _{D(ON}	N)				5		
Turn-On Rise Time	T _R		V _{GS} =10V, V _{DS} =30V, I _D =2A,			2.6		
Turn-Off Delay Time	T _{D(OFF}	$T_{D(OFF))}$ RL=6.7 Ω , F		3 Ω		16.1		ns
Turn-Off Fall Time	T _F					2.3		
Input Capacitance	C _{ISS}	5				825		
Output Capacitance	Coss	S	V_{DS} =25 V , V_{GS} =0 V , f=1 MHz			49		pF
Reverse Transfer Capacitance	C _{RSS}	S				41		
Maximum Continuous Drain to Source Diode Forward Current			Is	-	1	10	Α	
Maximum Pulsed Drain to Source Diode I	Forward Cu	urrent		Іѕм	-	ı	30	Α
Drain to Source Diode Forward Voltage		V _{GS} =	0V,I _S = 15A	V _{SD}	-	ı	1.2	V
Body Diode Reverse Recovery Time	ody Diode Reverse Recovery Time T _J =25%		5℃,I _F =15A,	T _{rr}	-	35	-	ns
Body Diode Reverse Recovery Charge	dy Diode Reverse Recovery Charge di/dt = 100A/us		= 100A/us	Qrr	-	53	-	nC

Notes:

- 1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature.
- 2. EAS condition: Starting T_J =25C, V_{DD} =30V, V_G =10V, R_G =25 Ω , L=0.5mH, I_{AS} =6.1A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%.

Typical Electrical and Thermal Characteristics

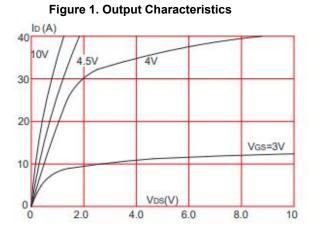


Figure 3. On-resistance vs. Drain Current

Figure 2. Typical Transfer Characteristics

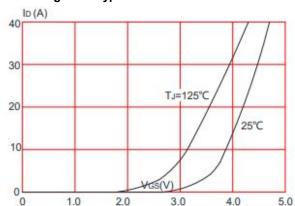
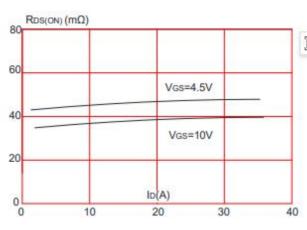
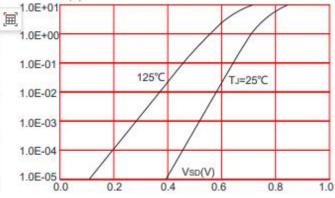




Figure 4. Body Diode Characteristics

Is(A)

Figure 5. Gate Charge Characteristics

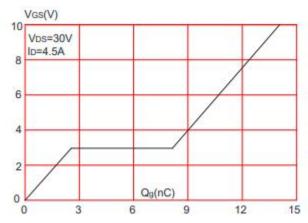


Figure 6. Capacitance Characteristics

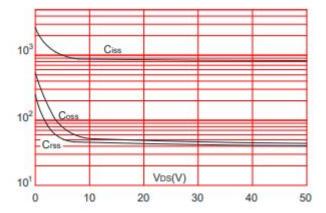


Figure 7. Normalized Breakdown voltage vs.

Junction Temperature

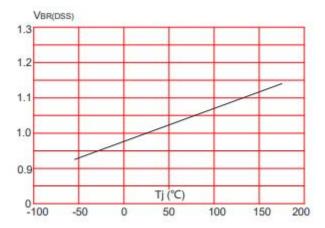


Figure 9. Maximum Safe Operating Area

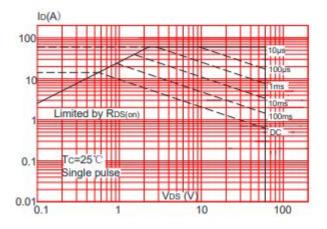


Figure 11: Normalized Maximum Transient
Thermal Impedance, Junction-to-Case

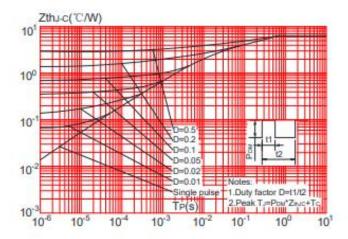


Figure 8. Normalized on Resistance vs.

Junction Temperature

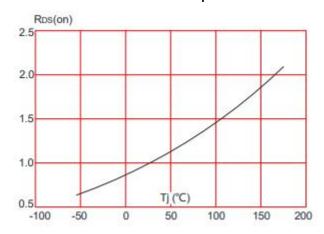
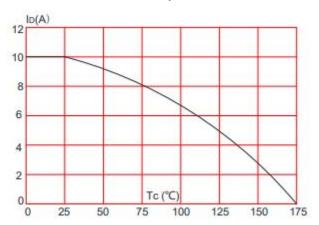
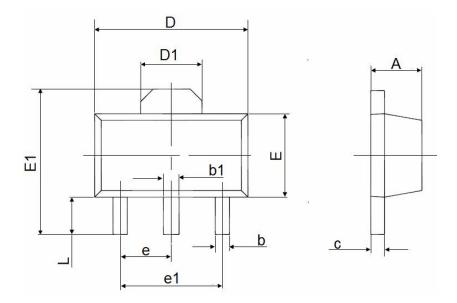




Figure 10. Maximum Continuous Drian Current vs. Case Temperature

Package Dimensions SOT89-3L

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	REF.	0.061 REF.		
Е	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060	TYP.	
e1	3.000 TYP.		0.118	TYP.	
L	0.900	1.200	0.035	0.047	

Important Notice and Disclaimer

HL Microelectronics reserves the right to make changes to this document and its products and specifications at any time without notice.

Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

HL Microelectronics makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, not does HL Microelectronics assume any liability for application assistance or customer product design.

HL Microelectronics does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of HL Microelectronics.

HL Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of HL Microelectronics.

http://www.iseachip.cn 第 6 页 共 6 页 Version 1.1