

Motorcomm YT8510H_YT8510C

Datasheet

INTEGRATED 10/100 LONG RANGE ETHERNET TRANSCEIVER

VERSION V1.02 DATE 2020-07-29

Copyright Statement

This document is copyright of Suzhou Motorcomm Electronic Technology Co., Ltd. ("Motorcomm"). All rights reserved. No company or individual may copy, disseminate, disclose or otherwise distribute any part of this document to any third party without the written consent of Motorcomm. If any company or individual so does, Motorcomm reserves the right to hold it or him liable therefor.

Disclaimer

This document only provides periodic information, and its contents will/may be updated from time to time according to actual situation of Motorcomm's products without further notice. Motorcomm will not take any responsibility for any direct or indirect losses caused due to improper use of this document.

Revision History

Revision	Release Date	Summary
1.0	2019/04/11	Update register table.
1.01	2020/10/09	Modify pin description.
1.02	2020/04/09	Update pin description; Modify register description.

Content

1. General Description	1
1.1. TARGET APPLICATIONS	1
2. Feature	2
3. Pin assigment	3
3.1. QFN40 6x6mm	3
3.2. Pin Descriptions	4
4. Function Description	8
4.1. Application Diagram	
4.1.1. LRE100-1/LRE10-1 application	8
4.1.2. 100Base-Tx/10Base-Te application	
4.2. MAC interface	8
4.3. Long range ethernet	8
4.4. Management interface.	8
4.5. DAC	
4.6. ADC	
4.7. Adaptive equalizer	
4.8. Echo-canceller	9
4.9. Clock recovery	
4.10. Link Monitor	
4.11. Auto-Neg	10
4.12. LDS (Link discover signaling)	10
4.13. Polarity detection and auto correction	
4.14. EEE	11
5. Operational Description	
5.1. Reset	12
5.2. Power On Strapping	12
5.3. PHY Address	13
5.4. XMII interface	13
5.4.1. MII	13
5.4.2. RMII	13
5.4.3. RGMII	14
5.4.4. REMII	15
5.5. 2.5V/3.3V selection	16
5.6. Loopback mode	16
5.6.1. Internal loopback:	16
5.6.2. External loopback	17
5.6.3. Remote loopback	17

5.7. Interrupt	17
5.8. LED	17
5.9. LDS function	18
5.9.1. LDS with legacy PHY	18
5.9.2. LDS with LRE PHY	18
5.9.3. LDS disable and force speed	21
5.10. IEEE Auto Negotiation	21
6. Register Overview	23
6.1. MII register and extended register access	23
6.2. MII Management Interface Clause 22 Register Programming	23
6.2.1. Legacy mii registers	23
6.2.2. Lds mii registers	41
6.2.3. Extended registers	48
7. Timing and AC/DC characteristics	66
7.1. DC Characteristics	66
7.2. AC Characteristics	
7.2.1. MDC/MDIO Timing	66
7.2.2. MII Transmission Cycle Timing	67
7.2.3. MII Reception Cycle Timing	68
7.2.4. RMII Transmission and Reception Cycle Timing	
7.2.5. RGMII Timing w/o delay	69
7.2.6. RGMII Timing with internal delay	70
7.3. Crystal Requirement	70
7.4. Oscillator/External Clock Requirement	71
8. Power Requirements	72
8.1. Absolute Maximum Ratings	72
8.2. Recommended Operating Condition	72
8.3. Power On Sequence	72
8.4. Maximum Power Consumption	73
9. Mechanical and Thermal	74
9.1. RoHS-Compliant Packaging	74
9.2. Thermal Resistance	74
10. Mechanical Information	75
11. Ordering Information.	76

1. General Description

The MotorComm YT8510 is an IEEE 100BASE-TX/10BASE-Te and LRE100-1/LRE10-1 Ethernet physical layer transceiver (PHY). Ideally suited for a wide range of enterprise applications, it is manufactured using a standard digital CMOS process and contains all the active circuitry required to implement the physical layer functions to transmit and receive data on a on Category 5 unshielded twisted-pair (UTP) cabling.

Besides legacy100BASE-TX/10BASE-Te, YT8510 supports LRE100/10-1 function. Long Range Ethernet working at 100/10Mbps over 1-pair cable can achieve very long link distance: 300m@100Mbps and 1000m@10Mbps (depending on cable type and individual cable parameters).

When YT8510 connects with IEEE 802.3 complied PHY, IEEE auto-negotiation mechanism shall be started and links up to 100/10BT accordingly.

Once both of YT8510 are connected, LRE function and all the 100/10BT and LRE100/10-1 abilities are enabled by default. They start LDS (Link Discover Signaling) auto-negotiation process, auto detect the cable length, and link up to the proper speed depending on the cable length (link up to LRE100-1 if cable length <300m, otherwise LRE10-1).

Based on cutting-edge DSP technology, combing adaptive equalizers, echo canceller, ADCs, phase-locked loops, line drivers, encoders/decoders and all other required support circuitry at a 100Mbps data rate to achieve robust performance and exceed automotive electromagnetic interference (EMI) requirements in noisy environments with very low power dissipation.

YT8510 is designed to be fully compliant with RGMII, RMII and MII interface specifications, allowing compatibility with standard Ethernet media access controllers (MACs) and switch controllers.

YT8510 delivers the most comprehensive enterprise technology solution required by industrial application.

1.1. TARGET APPLICATIONS

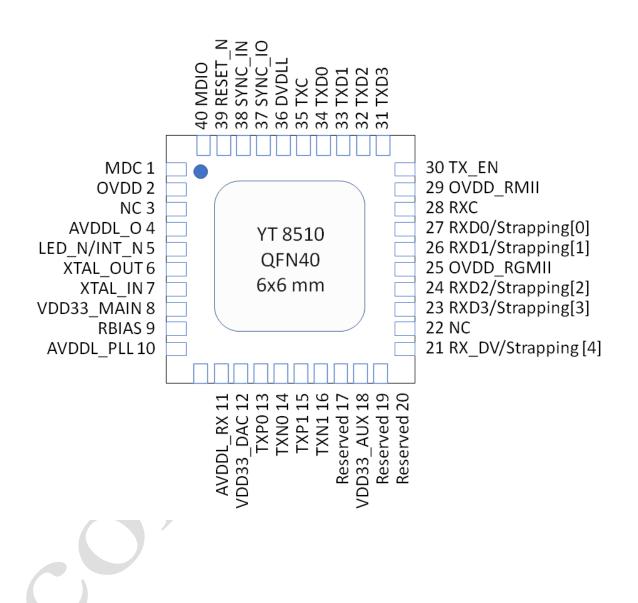
General Embedded Applications

Video Surveillance

Industrial Controls

Factory Automation

2. Feature


- Support for the following interfaces via twisted-pair or coaxial cable
 - 100Base-Tx.
 - 10Base-Te.
 - 100Mbps long range ethernet. (Reach over 300 meters via one pair of cat5e twisted-pair cable)
 - 10Mbps long range ethernet. (Reach over 800 meters via one pair of cat5e twisted-pair cable)
- Support IEEE auto-negotiation and LDS (link discover signaling) on twisted-pair cable.
- Support LDS and LRE100/10-1 on coaxial cable
- Support auto cable detection and speed selection.
- MII/RMII/RGMII support
- RMII/RGMII interface EMI enhancement
- Support latency accommodation of RGMII clock
- Support IEEE 802.1AS
- Support POE function
- Automotive Cable Diagnostics support
- Integrated LDO regulator allowing a single 3.3V power supply
- Internal, external and remote loopback mode for diagnosis
- MDI pins protected against ESD to 6kV HBM and 6kV IEC61000-4-2
- Jumbo frame support up to 16 kB

- Polarity detection and auto/manual correction
- Integrated twisted-pair termination resistors
- Trace matched output impedance
- Integrated low-pass filter
- Temperature range
 - Consumer : $0 \sim 70$ °C
 - Industrial: -40~85 °C
- Robust cable ESD tolerance
- Package QFN 40, 6x6mm

3. Pin assigment

3.1. QFN40 6x6mm

3.2. Pin Descriptions

I = Input

O = Output

I/O = Bidirectional

OD = Open-drain output

OT = Tristate signal

B = Bias

PU = Internal pull-up

PD = Internal pull-down

SOR = Sample on reset

CS = Continuously sampled

ST = Schmitt trigger

XT = Crystal inputs/outputs pin type

D = Digital pin type

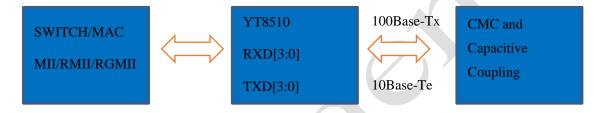
G = RGMII pin type

A = Analog pin type

Pin No.	Symbol	Туре	Description
1	MDC	I; ST	Management Data Clock. Only need to be work during mdio operation.
2	OVDD	PWR, IO	2.5V or 3.3V for digital pads. When config register to select 2.5V, all digital pins, including MII/RMII/RGMII, RESET, MDIO, and LED/INT etc, are not 3.3V tolerant. In 3.3V application, this pin should connect to 3.3V as power input. In 2.5V application, internal 2.5V LDO is enabled, this pin is 2.5V power output, and connect to OVDD_RMII, OVDD_RGMII to drive the related signals.
3	NC	-	NC
4	AVDDL_O	PWR,O	Internal LDO 1.2V output for all AVDDL power.
5	LED_N/INT_N	O,od	LED_N/INT_N Dual function pin. This pin is a dual function pin. It is active low unless programmed through MDIO.
6	XTAL_OUT	O/XT	25 MHz Crystal Oscillator Output Pin. A continuous 25 MHz reference clock must be supplied to the chip by connecting a 25 MHz crystal between these two pins or by driving XTAL_IN with an external 25 MHz clock. When using a crystal, connect a loading capacitor from each pin to GND. When using an oscillator, leave XTAL_OUT unconnected.
7	XTAL_IN	I/XT	25 MHz Crystal Oscillator Input Pin.
8	VDD33_MAIN	PWR, I	3.3V power for the main core.
9	RBIAS	Ana	Bias Resistor. A 2.4 k $\Omega\pm1\%$ resistor is connected between the RBAIS pin and GND
10	AVDDL_PLL	PWR, I	1.2V power for the pll.
11	AVDDL_RX	PWR, I	1.2V power for the receiver.
12	VDD33_DAC	PWR, I	3.3V power for the DAC.
13	TXP0	Ana	Transmit/Receive Pairs for channel 0. Differential data from copper media is transmitted and received on the single TRD \pm signal pair. There are 50Ω internal terminations on each pin. Since this device incorporates voltage driven DAC, it does not require a center-tap
14	TXN0	Ana	supply.
15	TXP1	Åna	Transmit/Receive Pairs for channel 1. Differential data from copper media is transmitted and received on the single TRD \pm signal pair. There are 50Ω internal terminations on each pin. Since this device incorporates voltage driven DAC, it does not require a center-tap
16	TXN1	Ana	supply.
17	Reserved	I,pd	Reserve for internal use. Recommend to keep floating.
18	VDD33_AUX	PWR, I	3.3V power for the auxiliary power domain. This pin supplies power to the passive signal detect circuitry. Can direct connect to VDD33_MAIN.
19	Reserved	0	Reserve for internal use. Recommend to keep floating.
20	Reserved	l,pd	Reserve for internal use. Recommend to pull up to OVDD through 4.7K resistor.

			MotorComm
21	RX_DV/ Strapping[4]	IO,pd	Receive Data Valid. Active-high. RX_DV indicates that a receive frame is in progress and that the data present on the RXD output pins is valid.
			Strapping[4]. Used as power on strapping[4] bit when reset is active.
22	NC	-	Keep floating.
23	RXD[3]/ Strapping[3]	IO,pd	Receive Data Outputs. Byte-wide receive data output synchronous with the receive clock. RXD[3] is the most significant bit. Strapping[3]. Used as power on strapping[3] bit when reset is active.
24	RXD[2]/ Strapping[2]	IO,pd	Receive Data Outputs. Byte-wide receive data output synchronous with the receive clock. Strapping[2]. Used as power on strapping[2] bit when reset is active.
25	OVDD_RGMII	PWR, I	2.5V or 3.3V for RGMII IO. This pin is internally shorted with OVDD_RMII.
26	RXD[1]/ Strapping[1]	IO,pd	Receive Data Outputs. Byte-wide receive data output synchronous with the receive clock. Strapping[1]. Used as power on strapping[1] bit when reset is active.
27	RXD[0]/ Strapping[0]	IO,pd	Receive Data Outputs. Byte-wide receive data output synchronous with the receive clock. RXD[0] is the less significant bit. Strapping[0]. Used as power on strapping[0] bit when reset is active.
28	RXC	IO,pu	Receive Clock. 2.5M/25M output or input. This clock is used to synchronize the receive data outputs RXD[3:0]. The direction and frequency depend on MII mode and link mode.
29	OVDD_RMII	PWR, I	2.5V or 3.3V for RGMII IO. This pin is internally shorted with OVDD_RGMII.
30	TX_EN	I,ST	Transmit Enable. Active-high. When TX_EN is asserted, the data on the TXD pins is encoded and transmitted.
31	TXD[3]	I,pd	Transmit Data Input. Data is input synchronously with TXC clock.
32	TXD[2]	I,pd	Transmit Data Input. Data is input synchronously with TXC clock.
33	TXD[1]	I,pd	Transmit Data Input. Data is input synchronously with TXC clock.
34	TXD[0]	I,pd	Transmit Data Input. Data is input synchronously with TXC clock.
35	TXC	IO,pd	Transmit Clock. 2.5M/25M/50M output or input. This clock is used to synchronize the transmit data inputs TXD[3:0]. The direction and frequency depend on MII mode and link mode.
36	DVDDL	PWR, I	1.2V input for digital core
37	SYNC_IO	IO,pd	802.1AS Frame Sync event/sync pulse input or output

38	SYNC_IN	I, ST	802.1AS Frame Sync event/sync pulse input.
39	RESET_N	l,pu	RESET. Active-low, reset pin for chip.
40	MDIO	IO,pu	Management Data I/O. This serial input/output bit is used to read from and write to the MII registers. The data value on the MDIO pin is valid and latched on the rising edge of MDC. This pin must pull up to


4. Function Description

4.1. Application Diagram

4.1.1. LRE100-1/LRE10-1 application

4.1.2. 100Base-Tx/10Base-Te application

4.2. MAC interface

YT8510 supports MII/REMII, RMII, RGMII to connect with MAC. They are configured by power on strapping (refer to the Power On Strapping for details) Besides, the signal level can be set to 2.5V or 3.3V.

4.3. Long range ethernet

Long range ethernet is the motor-comm proprietary mode in extended cable reach application up to 300m in 100Mbps mode or 800m in 10Mbps mode with 1-pair CAT5E cable. It can also operate on coax cable up to 1000m.

LRE100-1 is 100Mbps Mode.

LRE10-1 is 10Mbps Mode.

4.4. Management interface

The Status and Control registers of the device are accessible through the MDIO and MDC serial interface. The functional and electrical properties of this management interface comply with IEEE 802.3, Section 22 and also support MDC clock rates up to 12.5MHz.

4.5. DAC

The digital-to-analog converter (DAC) transmits PAM3, MLT3, and Manchester coded symbols. The transmit DAC performs signal wave shaping that reduces electromagnetic interference (EMI). The transmit DAC uses voltage driven output with internal terminations and hence does not require external components or magnetic supply for operation.

4.6. ADC

Each receive channel has its own analog-to-digital converter (ADC) that samples the incoming data on the receive channel and feeds the output to the digital data path.

4.7. Adaptive equalizer

The digital adaptive equalizer removes inter-symbol interference (ISI) created by the channel. The equalizer accepts sampled data from the analog-to-digital converter (ADC) on each

channel and produces equalized data. The coefficients of the equalizer are adaptive to accommodate varying conditions of cable quality and cable length.

4.8. Echo-canceller

The echo impairment is caused on each channel because of the bidirectional transceiver in LRE100-1/LRE10-1 mode. An echo canceller is added to remove this impairment from the ADC output. The echo canceler coefficients are adaptive to manage the varying echo impulse responses caused by different channels, transmitters, and environmental conditions.

4.9. Clock recovery

The clock recovery block creates the transmit and receive clocks for 100BASE-TX, 10BASE-T and LRE100-1/LRE10-1.

In 10BASE-T or 100BASE-TX mode, the transmit clock is locked to the 25 MHz crystal input, and the receive clock is locked to the incoming data stream.

In LRE100-1/LRE10-1 modes, one end of the link is configured as the master, and the other is set to slave. The master transmit and receive clocks are locked to the 25 MHz crystal input. The slave transmit and receive clocks are locked to the incoming receive data stream.

4.10. Link Monitor

Description about link status in different working mode.

In LRE10-1/LRE100-1 mode, after receiver synchronizes to link partner's transmit signal and finishes local training process, local receive status will be good. YT8510 will monitor local receive status continuously. Local

receive status should be good for at least 1.8us in LRE100-1 mode (18us in LRE10-1 mode), then link monitor enters link pass status. Accordingly, if Local receive status is bad then link monitor enters link fail status immediately.

Link status can be read in mii reg address 0x1h, bit2.

4.11. Auto-Neg

The YT8510 negotiates its operation mode using the auto negotiation mechanism according to IEEE 802.3 clause 28 over the copper media. Auto negotiation supports choosing the mode of operation automatically by comparing its own abilities and received abilities from link partner. The advertised abilities include:

Speed: 10/100Mbps

Duplex mode: full duplex and/or half duplex

Auto negotiation is initialized when the following scenarios happen:

Power-up/Hardware/Software reset

Auto negotiation restart

Transition from power-down to power up

Link down

Auto negotiation is enabled for YT8510 by default, and can be disable by hardware or software control.

4.12. LDS (Link discover signaling)

YT8510 supports long range ethernet (LRE), which uses link discovery signaling (LDS) instead of auto negotiation since the extended cable reach attenuates the auto negotiation link pulses. LDS is an extended reach signaling scheme and protocol, which is used to

- a) Master/Slave assignment
- b) Estimate cable length
- c) Confirm pair number and pair connectivity ordering
- d) Choose highest common operation mode

IEEE-compliant PHYs will ignore LDS signal since its frequency is less than 2MHz according to IEEE802.3 clause 14. If the link partner is an IEEE legacy ethernet PHY, YT8510 can detect the standard NLP, FLP, MLT-3 IDLE signal, or 100BASE-TX signal, and then transits LDS mode into Clause 28 auto negotiation mode. If the link partner is an IEEE automotive ethernet PHY, YT8510 can also detect link partner's master mode, and configure itself as an opposite slave mode.

Forcing pair number and speed mode is also supported. The same forcing must be done at both ends of the link.

4.13. Polarity detection and auto correction

YT8510 can detect and correct two types of cable errors: swapping of pairs within the UTP cable and swapping of wires within a pair.

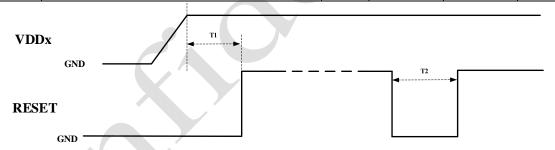
For 10BASE-T/100BASE-TX, YT8510 can handle both cable errors at the same time.

For LRE100-1/LRE10-1 modes, the YT8510 can handle swapping of wires within a pair for both master and slave mode disregard LDS. Both master and slave should work on pair 0.

4.14. EEE

EEE is IEEE 802.3az, an extension of the IEEE 802.3 standard. EEE defines support for the PHY to operate in Low Power Idle (LPI) mode which, when enabled, supports QUIET times during low link utilization allowing both link partners to disable portions of each PHY's circuitry and save power. YT8510 only supports EEE in 100BASE-TX mode with MII mode.

5. Operational Description


5.1. Reset

YT8510 have a hardware reset pin(RESET_N) which is low active. RESET_N should be active for at least 10ms to make sure all internal logic is reset to a known state. Hardware reset should be applied after power up.

RESET_N is also used as enable for power on strapping. After RESET_N is released, YT8510 latches input value on RX_DV and RXD[3:0] as strapping[4:0]. Strapping[4:0] is used as configuration information which provides flexibility in application without mdio access.

YT8510 also provides two software reset control registers which are used to reset all internal logic except some mdio configuration registers. For detailed information about what register will be reset by software reset, please refer to register table. Configure bit 15 of lds mii register(address 0x0) or mii register(address 0x0) to 1 to enable software reset. These two bits are self-clear after reset process is done.

Symbol	Description	Min	Тур	Max	Units
T1	The duration from all powers steady to reset signal release to high	10	-	-	ms
T2	The duration of reset signal remain low timing	10	-	-	ms

5.2. Power On Strapping

POS pin states are latched during reset turns from low to high stage. It is recommended to set them to solid high/low states by pull up/down resistors despite of the internal PU/PD. There are 5 pins used for POS function:

No.	Pin Name	Strapping number	POS function description	
21	RXDV	Strapping[4]	Strapping[4:3]: PHY_address[1:0]	
23	RXD3	Strapping[3]		
24	RXD2	Strapping[2]	Strapping[2:0]: MII/REMII/RMII/RGMII select	
26	RXD1	Strapping[1]	000: MII; 001: RMII2; 010: RMII1	
27	RXD0	Strapping[0]	100: REMII; 110: RGMII; 111: Reserved	

5.3. PHY Address

For YT8510, Strapping[4:3] is used to generate phy address.

Phy address is Strapping[4:3]+1. For example, If Strapping[4:3] is 2'b11, then phy address is 4.

YT8510 always response to phy address 0. It also has another broadcast phy address which is configurable through mdio. Bit[4:0] of extended register(address 0x0) is broadcast phy address and its default value is 5'b11111. Bit[5] of extended register(address 0x0) is enable control for broadcast phy address and its default value is 1'b1.

5.4. XMII interface

YT8510 support 4 kinds of MII related interfaces: MII, RMII, RGMII and REMII.

5.4.1. MII

The Media Independent Interface (MII) is the digital data interface between the MAC and the physical layer that can be enabled when the device is functioning in 10BASE-T, 100BASE-TX, LRE100-1, or LRE10-1 mode. The original MII transmit signals include TX_EN, TXC, TXD[3:0], and TX_ER. The receive signals include RX_DV, RXC, RXD[3:0], and RX_ER. The media status signals include CRS and COL. Due to pin-count limitations, the YT8510 supports a subset of MII signals. This subset includes all MII signals except TX_ER, RX_ER, CRS and COL. For 100M application, TXC and RXC are 25MHz; for 10M application, TXC and RXC are 2.5MHz. TXC and RXC are output in this case.

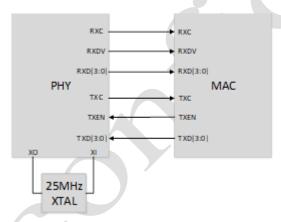


Figure . connection diagram of MII

5.4.2. RMII

Reduced media-independent interface (RMII) is a standard which was developed to reduce the number of signals required to connect a PHY to a MAC. If this interface is active, the number of data signal pins required to and from the MAC is reduced to half by doubling clock speed compared to MII. It has 7 signals: REF_CLK, TX_EN, TXD[1:0], RX_DV and RXD[1:0]. In YT8510, we use TXC as REF_CLK. For 100M application,

REF_CLK is 50MHz; for 10M application, REF_CLK is still 50MHz, data will be duplicated for 10 times in 20ns cycles.

YT8510 supports two types of connection method;

- 1. RMII1 mode: This is fully conforming to RMII standard. PHY TXC can be provided by external oscillator or MAC.
 - 2. RMII2 mode: TXC will be 50MHz output to MAC.

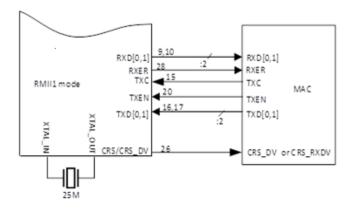


Figure .connection diagram of RMII1(with 25MHz and 50MHz clock)

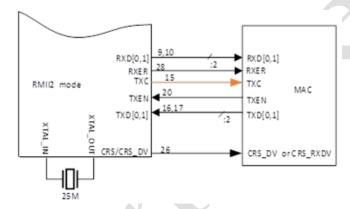


Figure .connection diagram of RMII2

5.4.3. **RGMII**

Reduced gigabit media independent interface is a subset of GMII which is used for gigabit Ethernet. For 100M/10M application, RGMII is similar to MII. The only difference is that tx_er/rx_er is transmitted by tx_en/rx_dv on the falling edge of clock. TXD[3:0] and RXD[3:0] will be duplicated on both rising and falling edge of clock. For 100M application, TXC and RXC are 25MHz; for 10M application, TXC and RXC are 2.5MHz.

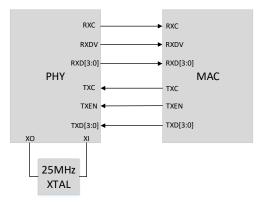


Figure .connection diagram of RGMII

5.4.3.1. RX_Delay and TX_Delay

YT8510 supports RX_delay and TX_delay adjustment through regiter configuration. They are set by extended register 0x4002. RX_delay is enabled by default. Over 100ps is added for one step.

Extended Register 4002h: extended clock delay control				
Bit	Symbol	Access	default	Description
15:12	Mii_Rxc_Delay_Sel	RW	4'd0	Rxc out delay sel
11:8	Mii_Txc_Delay_Sel	RW	4'd0	Txc in delay sel
7:4	Rgmii_Rxc_Delay_Sel	RW	4'd10	Rxc out delay sel
3:0	Rgmii_Txc_Delay_Sel	RW	4'd10	Txc in delay sel

5.4.4. **REMII**

Reverse media independent interface is the opposite of MII interface. The only difference is the direction of tx clock and rx clock. For MII, tx clock and rx clock are output; for REMII, tx clock and rx clock are input.

REMII interface are used for back to back connection of two PHYs.

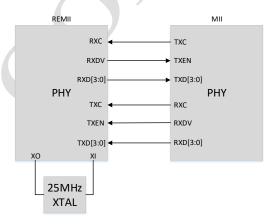


Figure .connection diagram of REMII

5.5. 2.5V/3.3V selection

To accommodate the signal level of MAC interface, MII/RMII/RGMII. YT8510 suports 2.5/3.3V signal power rail selection. Be noted that once power rail is selected, all the digital pins' including MII/RMII/RGMII, DMIO/MDC, RESET, INT/LED etc are all be affected.

Config extended_reg0x71[1:0] to select 2.5/3.3V, as below:

Extende	Extended Register 0071h:					
Bit	Symbol	Access	default	Description		
15:2	Reserved	RO	14'b0	reserved		
1:0	LDO_25_cfg	RW	2'b0	OVDD output voltage control register 2'b00: 3.3V 2'b01: 2.5V 2'b10: 3.3V 2'b11: 2.5V		

As for schematic for 2.5/3.3V, please refer to the pin description or reference design.

5.6. Loopback mode

There are three loopback modes in YT8510.

5.6.1. Internal loopback:

In Internal loopback mode, YT8510/YT8050 feed transmit data to receive path in chip.

Configure bit 14 of mii register(address 0h0) to enable internal loopback mode. For 10Base-T and 100Base-Tx, YT8510 feeds digital dac data to adc directly. For LRE10-1/LRE100-1,

YT8510 feeds digital pcs transmit data to pcs receiver directly.

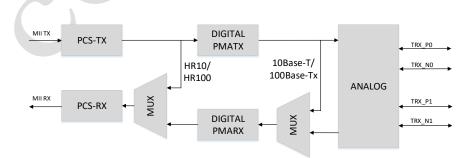


Figure . Internal loopback

5.6.2. External loopback

In external loopback mode, YT8510 feed transmit data to receive path out of chip. For 10Base-T and 100Base-Tx, just connect TRX_P0/N0 to TRX_P1/N1. For LRE10-1/LRE100-1, configure bit 12 of extended register(address 0h4000) and just leave TRX_P0/N0 and TRX_P0/N0 unconnected.

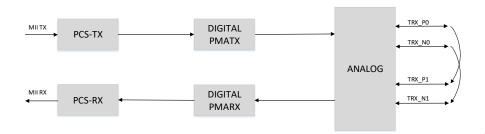


Figure . external loopback

5.6.3. Remote loopback

In remote loopback mode, YT8510 feed MII receive data to transmit path in chip. Configure bit 11 of extended register(address 0h4000) and for TRX interface, just connect to link partner normally.

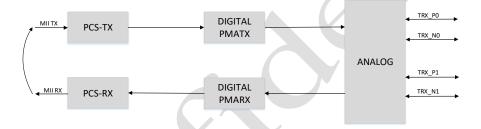


Figure . external loopback

5.7. Interrupt

Interrupt shares same pin with LED. It works as LED by default.

Interrupt function can be selected by configuring bit 14 of extended register(address 0h4001). The polarity of interrupt is configurable by accessing bit 4 of mii reg(address 0h10), default is low_active.

Every interrupt has a corresponding mask bit and interrupt bit.

Please refer to mii register map(address 0h12, 0h13) for detailed information.

5.8. LED

The LED interface can either be controlled by the PHY or controlled manually, independent of the state of the PHY. 1 status LED is available. It can be used to indicate operation speed, duplex mode, and link status. The

LED can be programmed to different status functions from their default value. They can also be controlled directly from the register configuration.

5.9. LDS function

The YT8510 supports long range ethernet and negotiate with LDS protocol to determine the link speed.

5.9.1. LDS with legacy PHY

LDS enables YT8510 to link up with LDS supported link partners in extended cable reach application. YT8510 can also link up with legacy link partners in 10BASE-T or 100BASE-TX mode through a UTP cable. In this case, YT8510 performs the same as legacy 100/10BT PHY and link up with the link partner.

Legacy PHY			
	Auto-neg	Auto-neg	
YT8510 LDS	1000/100/10BT	100/10BT	Auto-neg 10BT
Default (LDS is enabled and all abilities			
are enabled)	100BT full duplex	100BT full duplex	10BT full duplex
LDS is disabled and all abilities are			
enabled	100BT full duplex	100BT full duplex	10BT full duplex

Table: supported protocols, cable reach, and cable type

5.9.2. LDS with LRE PHY

When YT8510 connect with another LRE PHY (another YT8510, etc), they communicate with LDS signals to exchange abilities, measure the cable length, then determine the best speed and try to link up.

Length Pair number	<300m	300-1000m
2-pair (must include MDI0)	LRE100-1	LRE10-1
1-pair (only MDI0)	LRE100-1	LRE10-1

Table: YT8510 supported negotiation results.

Note: LDS/LRE only works on MDI0 pair.

5.9.2.1. LDS enable

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs

MII	16'h0000	16'h9000	Bit15: 1'b1, SW reset
			Bit12: 1'b1, enable LDS

Table: enable LDS

5.9.2.2. Restart LDS

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h0000	16'h2000	Bit13: 1'b1, restart LDS

Table: restart LDS

5.9.2.3. LDS advertised abilities

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h0004	16'h002e	Bit5: 1'b1, advertise 100BASE-T1 ability
			Bit3: 1'b1, advertise 100BASE-TX ability
		AK	Bit2: 1'b1, advertise 10BASE-T ability
			Bit1, 1'b1, advertise 10BASE-T1 ability

Table: LDS advertised abilities

5.9.2.4. LDS status

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h0001		Bit5: 1'b1, LDS complete; 1'b0, LDS not complete Bit3: 1'b1, support LDS; 1'b0, not support LDS Bit2: 1'b1, Link up; 1'b0, link down
MII	16'h000a		Bit15: 1'b1, link is downgrade; 1'b0, link is not downgrade Bit14: 1'b1, Master; 1'b0, slave Bit13-12: active pair number

	Bit11-0: cable length
	•

Table: LDS status

5.9.2.5. LDS result

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h000b		Bit4: 1'b1, Auto negotiation, link to IEEE 100/10 mode Bit3: 1'b1, link to LRE100-1 Bit2: 1'b1, link to LRE10-1 Bit1: 1'b1, link to 100BT Bit0: 1'b1, link to 10BT

Table: LDS result

Note:

Mii_reg0xb[4:0] stands for the LDS negotiation results.

Bit 4 = 1'b1 means link partner does not turn on LDS or does not support LDS, YT8510 detected the IEEE auto-neg signals or 100BT/10BT signals and link up. To make sure the speed, customer needs to read IEEE MII registers (mii_reg0x1, mii_reg0x11, etc)

Bit [3:0] stands for the link speed after LDS negotiation.

5.9.3. LDS disable and force speed

When LDS is disabled, forcing pair count and speed mode is also supported. The same forcing must be done at both ends of the link. Differ from 100/10BT, one PHY must be master and the other must be slave mode when they link to LRE100/10-1. It means if LDS is disabled, and customer expect to link to LRE100/10-1, manually setting master/slave for both PHYs accordinly is required. Below are the settings:

5.9.3.1. Force LRE100-1 Master/Slave

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h0000	16'h8208	Bit15: 1'b1, SW reset Bit12: 1'b0, LDS disable Bit9-6: 4'b1000, 100Mbps Bit5-4: 2'b00, 1 pair Bit3: 1'b1, master; 1'b0, slave

5.9.3.2. Force LRE10-1 Master/Slave

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0004	Bit2: 1'b1, Access LDS MII regs
MII	16'h0000	16'h8008	Bit15: 1'b1, SW reset
			Bit12: 1'b0, LDS disable
			Bit9-6: 4'b0000, 10Mbps
		. (/	Bit5-4: 2'b00, 1 pair
			Bit3: 1'b1, master; 1'b0, slave

5.10. IEEE Auto Negotiation

Auto-negotiation complies to IEEE 802.3 standard. It is supported by all the legacy PHYs. For YT8510, if link partner is legacy PHY, they determine link speed and duplex through auto-negotiation mechanism, no matter LDS is enabled or disabled.

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0006	Bit2: 1'b0, Access IEEE MII regs
MII	16'h0000	16'h9140	Bit12: 1'b1, enable auto negotiation

Table: Enable auto negotiation

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0006	Bit2: 1'b0, Access IEEE MII regs
MII	16'h0000		Bit9: 1'b1, restart auto negotiation

Table: Restart auto negotiation

Register Type	Register Address	Write Value	Comments
Extended	16'h0100	16'h0006	Bit2: 1'b0, Access IEEE MII regs
MII	16'h0001		Bit5: 1'b1, AN complete; 1'b0, AN not
			complete
			Bit3: 1'b1, support AN; 1'b0, not support AN
			Bit2: 1'b1, Link up; 1'b0, link down
MII	16'h0011		Bit15-14: 2'b00, 10Mbps; 2'b01: 100Mbps
			Bit10: 1'b1, link is up

	Bit5: 1'b1, link is downgrade; 1'b0, link is not
	downgrade

Table: Auto negotiation status

6. Register Overview

YT8510 transceiver is designed to be fully compliant with the MII clause of the IEEE 802.3u Ethernet specification.

The MII management interface registers are written and read serially, using the MDIO and MDC pins.

A clock of up to 12.5 MHz must drive the MDC pin of the YT8510. Data transferred to and from the MDIO pin is synchronized with the MDC clock. The following sections describe what each MII read or write instruction contains.

6.1. MII register and extended register access

MII registers defined in IEEE 802.3 are only up to 64. To enlarge the register counters, extended reigsters are defined. The extended reigsters use 2 mii registers to access: mii_reg0x1e, mii_reg0x1f.

Extended reigster address are written to mii_reg0x1e, write a value to mii_reg0x1f, the value are written to the extended register, read mii_reg0x1f to get a value, it is the value of the extended reigster. For example:

Write extended register 0x100 to 0x4: write_mi_reg0x1e: 0x100; write_mii_reg0x1f: 0x4;

Read extended register 0x100: write_mii_reg0x1e: 0x100; read_mii_reg0x1f;

6.2. MII Management Interface Clause 22 Register Programming

YT8510 supports 2 set of MII registers: Legacy mii register (for IEEE 100/10BT) and Lds mii register (for LDS function).

Set extended reigster 0x100[2] to 1'b0 to select legacy mii register, 1'b1 to select lds mii register.

6.2.1. Legacy mii registers

6.2.1.1. Mii register 00h: Basic control register

Bit	Symbol	Access	Default	Description
15	Reset	RW SC	0x0	PHY Software Reset. Writing 1 to this bit
				causes immediate PHY reset. Once the
				operation is done, this bit is cleared
				automatically.
				0: Normal operation
				1: PHY reset

14	Loopback	RW SWC	0x0	Internal loopback control
1	Zoopowen		0.10	1'b0: disable loopback
				•
				1'b1: enable loopback
13	Speed_Selection(LSB)	RW	0x0	LSB of speed_selection[1:0]. Link speed can be
				selected via either the Auto-Negotiation
				process, or manual speed selection
				speed_selection[1:0]. Speed_selection[1:0] is
				valid when Auto-Negotiation is disabled by
				clearing bit 0.12 to zero.
				Bit6 bit13
				1 1 = Reserved
				0.1 = 100 Mb/s
				0.0 = 10 Mb/s
10		DIV	0.1	
12	Autoneg_En	RW	0x1	1: to enable auto-negotiation;
				0: auto-negotiation is disabled.
11	Power_down	RW SWC	0x0	1 = Power down
				0 = Normal operation
			K	When the port is switched from power down to
				normal operation, software reset and Auto-
				Negotiation are performed even bit[15] RESET
		A		and bit[9] RESTART_AUTO_NEGOTIATION
				are not set by the user.
10	Isolate	RW SWC	0x0	Isolate phy from RGMII/SGMII/FIBER.
				1'b0: Normal mode
	AY			1'b1: Isolate mode
9	Re_Autoneg	RW SC	0x0	Auto-Negotiation automatically restarts after
		SWS		hardware or software reset regardelss of bit[9]
				RESTART.
				1 = Restart Auto-Negotiation Process
				0 = Normal operation
8	Duplex_Mode	RW	0x1	The duplex mode can be selected via either the
				Auto-Negotiation process or manual duplex
				selection. Manual duplex selection is allowed
				when Auto-Negotiation is disabled by setting
				bit[12] AUTO_NEGOTIATION to 0.

				1 = Full Duplex
				0 = Half Duplex
7	Collision_Test	RW SWC	0x0	Setting this bit to 1 makes the COL signal
				asserted whenever the TX_EN signal is
				asserted.
				1 = Enable COL signal test
				0 = Disable COL signal test
				0 - Disable COL signal test
6	Speed_ Selection(MSB)	RW	0x1	See bit13.
5:0	Reserved	RO	0x0	Reserved. Write as 0, ignore on read

6.2.1.2. Mii register 01h: Basic status register

D:4	Cramb of	A 222	Dof1	Description
Bit	Symbol	Access	Default	Description
15	100BASE-T4	RO	0x0	PHY doesn't support 100BASE-T4
14	100BASE-X_Fd	RO	0x1	PHY supports 100BASE-X_FD
13	100BASE-X_Hd	RO	0x1	PHY supports 100BASE-X_HD
12	10Mbps_Fd	RO	0x1	PHY supports 10Mbps_Fd
11	10Mbps_Hd	RO	0x1	PHY supports 10Mbps_Hd
10	100BASE-T2_Fd	RO	0x0	PHY doesn't support 100BASE-T2_Fd
9	100BASE-T2_Hd	RO	0x0	PHY doesn't support 100BASE-T2_Hd
8	Extended_Status	RO	0x1	Whether support EXTended status register in MII 0xF 0: Not supported 1: Supported
7	Unidirect_Ability	RO	0x0	1'b0: PHY able to transmit from MII only when the PHY has determined that a valid link has been established 1'b1: PHY able to transmit from MII regardless of whether the PHY has determined that a valid link has been established
6	Mf_Preamble_Suppression	RO	0x1	1'b0: PHY will not accept management frames with preamble suppressed 1'b1: PHY will accept management frames with preamble suppressed

-	Antono Committee	DO CWC	00	1 11-O. A
5	Autoneg_Complete	RO SWC	0x0	1'b0: Auto-negotiation process not completed
				1'b1: Auto-negotiation process completed
4	Remote_Fault	RO RC	0x0	1'b0: no remote fault condition detected
		SWC LH		1'b1: remote fault condition detected
3	Autoneg_Ability	RO	0x1	1'b0: PHY not able to perform Auto-negotiation
				1'b1: PHY able to perform Auto-negotiation
2	Link_Status	RO LL	0x0	Link status
		SWC		1'b0: Link is down
				1'b1: Link is up
1	Jabber_Detect	RO RC	0x0	10BASE-Te jabber detected. It would assert if TX
		SWC LH		activity lasts longer than 42ms.
				1'b0: no jabber condition detected
				1'b1: Jabber condition detected.
0	Extended_Capability	RO	0x1	To indicate whether support EXTended registers, to
				access from address register 0x1E and data register
				0x1F
				1'b0: Not supported
				1'b1: Supported
			4	

6.2.1.3. Mii register 02h: PHY identification register1

Bit	Symbol	Access	Default	Description
15:0	Phy_Id	RO	16'b0	Bits 3 to 18 of the Organizationally Unique Identifier

6.2.1.4. Mii register 03h: PHY identification register2

Bit	Symbol	Access	Default	Description
15:10	Phy_Id	RO	6'b0	Bits 19 to 24 of the Organizationally Unique Identifier
9:4	Type_No	RO	6'h10	6 bits manufacturer's type number
3:0	Revision_No	RO	4'h9	4 bits manufacturer's revision number

6.2.1.5. MII register 04h: Auto-Negotiation advertisement

Bit	Symbol	Access	Default	Description

	Motor Comm
15 Next_Page RW 1'b0 This bit is updated immedia	·
operation; however the con	figuration does not take effect
until any of the following o	ccurs:
Software reset is asserted by	y writing register 0x0 bit[15]
Restart Auto-Negotiation is	s triggered by writing register
0x0 bit[9]	
The port is switched from p	power down to normal
operation by writing register	er 0x0 bit[11]
Link goes down	
If 1000BASE-T is advertise	ed, the required next pages are
automatically transmitted.	This bit must be set to 0 if no
additional next page is need	
1 = Advertise	9'
0 = Not advertised	
14 Ack RO 1'b0 Always 0.	
13 Remote Fault RW 1'b0 1 = Set Remote Fault bit	
Remote_Fault RW 1'b0 1 = Set Remote Fault bit	
0 = Do not set Remote Faul	lt bit
12 Extended_Next_Page RW 1'b1 Extended next page enable	control bit
1 = Local device supports t	ransmission of extended next
pages	
0 = Local device does not s	upport transmission of
extended next pages.	
11 Asymmetric_Pause RW 1'b1 This bit is updated immedia	ately after the writing
operation; however the con	figuration does not take effect
until any of the following o	occurs:
Software reset is asserted b	y writing register 0x0 bit[15]
	s triggered by writing register
0x0 bit[9]	
0x0 bit[9]	
0x0 bit[9] The port is switched from p	power down to normal
0x0 bit[9]	power down to normal

		1	1	Motor Comm
				1 = Asymmetric Pause
				0 = No asymmetric Pause
10	Pause	RW	1'b1	This bit is updated immediately after the writing
				operation; however the configuration does not take effect
				until any of the following occurs:
				Software reset is asserted by writing register 0x0 bit[15]
				Restart Auto-Negotiation is triggered by writing register
				0x0 bit[9]
				The port is switched from power down to normal
				operation by writing register 0x0 bit[11]
				Link goes down
				1 = MAC PAUSE implemented
				0 = MAC PAUSE not implemented
9	100BASE-T4	RO	1'b0	1 = Able to perform 100BASE-T4
				0 = Not able to perform 100BASE-T4
				Always 0
8	100BASE-	RW	1'b1	This bit is updated immediately after the writing
	TX_Full_Duplex			operation; however the configuration does not take effect
				until any of the following occurs:
				Software reset is asserted by writing register 0x0 bit[15]
				Restart Auto-Negotiation is triggered by writing register
				0x0 bit[9]
				The port is switched from power down to normal
				operation by writing register 0x0 bit[11]
				Link goes down
				1 = Advertise
				0 = Not advertised
7	100BASE-	RW	1'b1	This bit is updated immediately after the writing
	TX_Half_Duplex			operation; however the configuration does not take effect
				until any of the following occurs:

				Software reset is asserted by writing register 0x0 bit[15]
				Restart Auto-Negotiation is triggered by writing register
				0x0 bit[9]
				The port is switched from power down to normal
				operation by writing register 0x0 bit[11]
				Link goes down
				1 = Advertise
				0 = Not advertised
6	10BASE-	RW	1'b1	This bit is updated immediately after the writing
	Te_Full_Duplex			operation; however the configuration does not take effect
				until any of the following occurs:
				Software reset is asserted by writing register 0x0 bit[15]
				Restart Auto-Negotiation is triggered by writing register
				0x0 bit[9]
				The port is switched from power down to normal
				operation by writing register 0x0 bit[11]
				Link goes down
		3		1 = Advertise
		X		0 = Not advertised
5	10BASE-	RW	1'b1	This bit is updated immediately after the writing
	Te_Half_Duplex	/		operation; however the configuration does not take effect
				until any of the following occurs:
	7			Software reset is asserted by writing register 0x0 bit[15]
				Restart Auto-Negotiation is triggered by writing register 0x0 bit[9]
				The port is switched from power down to normal
				operation by writing register 0x0 bit[11]
				Link goes down
				1 = Advertise
				0 = Not advertised

4:0	Selector_Field	RW	5'b00001	Selector Field mode.	
				00001 = IEEE 802.3	

6.2.1.6. MII register 05h: Auto-Negotiation link partner ability

Bit	Symbol	Access	Default	Description
15	1000Base-X_Fd	RO SWC	1'b0	Received Code Word Bit 15 1 = Link partner is capable of next page 0 = Link partner is not capable of next page
14	ACK	RO SWC	1'b0	Acknowledge. Received Code Word Bit 14 1 = Link partner has received link code word 0 = Link partner has not received link code word
13	REMOTE_FAULT	RO SWC	1'b0	Remote Fault. Received Code Word Bit 13 1 = Link partner has detected remote fault 0 = Link partner has not detected remote fault
12	RESERVED	RO SWC	1'b0	Technology Ability Field. Received Code Word Bit 12
11	ASYMMETRIC_PAUSE	RO SWC	1'b0	Technology Ability Field. Received Code Word Bit 11 1 = Link partner requests asymmetric pause 0 = Link partner does not request asymmetric pause
10	PAUSE	RO SWC	1'b0	Technology Ability Field. Received Code Word Bit 10 1 = Link partner supports pause operation 0 = Link partner does not support pause operation
9	100BASE-T4	RO SWC	1'b0	Technology Ability Field. Received Code Word Bit 9 1 = Link partner supports 100BASE-T4 0 = Link partner does not support100BASE-T4

8	100BASE-	RO	1'b0	Technology Ability Field. Received Code Word
	TX_FULL_DUPLEX	SWC		Bit 8
				1 = Link partner supports 100BASE-TX full-
				duplex
				0 = Link partner does not support 100BASE-TX full-duplex
				-
7	100BASE-	RO	1'b0	Technology Ability Field. Received Code Word
	TX_HALF_DUPLEX	SWC		Bit 7
				1 = Link partner supports 100BASE-TX half-
				duplex
				0 = Link partner does not support 100BASE-TX
				half-duplex
6	10BASE-Te_FULL_DUPLEX	RO	1'b0	Technology Ability Field. Received Code Word
		SWC		Bit 6
				1 = Link partner supports 10BASE-Te full-duplex
		A		0 = Link partner does not support 10BASE-Te
				full-duplex
	10DAGE E HALE DUDLEY	DO.	121.0	,
5	10BASE-Te_HALF_DUPLEX	RO	1'b0	Technology Ability Field. Received Code Word Bit 5
		SWC		Bit 5
				1 = Link partner supports 10BASE-Te half-duplex
				0 = Link partner does not support 10BASE-Te
				half-duplex
4:0	SELECTOR_FIELD	RO	5'h0	Selector Field Received Code Word Bit 4:0
1.0		SWC	3 110	Selection Field Received Code Word Bit 4.0
		30		

6.2.1.7. MII register 06h: Auto-Negotiation expansion register

Bit	Symbol	Access	Default	Description
15:5	Reserved	RO	11'h0	Always 0
4	Parallel_Detection_fault	RO RC LH SWC	1'b0	1 = Fault is detected 0 = No fault is detected
3	Link_partner_next_page able	RO LH SWC	1'b0	1 = Link partner supports Next page

				0 = Link partner does not support next page
2	Local_Next_Page_able	RO	1'b1	1 = Local Device supports Next Page 0 = Local Device does not Next Page
1	Page_received	RO RC LH	1'b0	1 = A new page is received 0 = No new page is received
0	Link_Partner_Auto_negotiation_able	RO	1'b0	1 = Link partner supports autonegotiation 0 = Link partner does not support auto-negotiation

6.2.1.8. MII register 07h: Auto-Negotiation Next Page register

Bit	Symbol	Access	Default	Description	
15	Next_Page	RW	1'b0	Transmit Code Word Bit 15 1 = The page is not the last page 0 = The page is the last page	
14	Reserved	RO	1'b0	Transmit Code Word Bit 14	
13	Message_page_mode	RW	1'b1	Transmit Code Word Bit 13 1 = Message Page 0 = Unformatted Page	
12	Ack2	RW	1'b0	Transmit Code Word Bit 12 1 = Comply with message 0 = Cannot comply with message	
11	Toggle	RO	1'b0	Transmit Code Word Bit 11 1 = This bit in the previously exchanged Code Word is logic 0 0 = The Toggle bit in the previously exchanged Code Word is logic 1	
10:0	Message_Unformatte D_Field	RW	11'h1	Transmit Code Word Bits [10:0].	

	These bits are encoded as Message Code Field when bit[13]
	is set to 1, or as Unformatted Code Field when bit[13] is set
	to 0.

6.2.1.9. MII register 08h: Auto-Negotiation link partner Received Next Page register

Bit	Symbol	Access	Default	Description
15	Next_Page	RO	1'b0	Received Code Word Bit 15
				1 = This page is not the last page
				0 = This page is the last page
14	Reserved	RO	1'b0	Received Code Word Bit 14
13	Message_page_mode	RO	1'b0	Received Code Word Bit 13
				1 = Message Page
				0 = Unformatted Page
12	Ack2	RO	1'b0	Received Code Word Bit 12
				1 = Comply with message
				0 = Cannot comply with message
11	Toggle	RO	1'b0	Received Code Word Bit 11
				1 = This bit in the previously exchanged Code Word is logic
		X		0
				0 = The Toggle bit in the previously exchanged Code Word
				is logic 1
10:0	Message_Unformatte	RO	11'b0	Received Code Word Bit 10:0
	D_Field			These bits are encoded as Message Code Field when bit[13]
				is set to 1, or as Unformatted Code Field when bit[13] is set
				to 0.

6.2.1.10. MII register 0Dh: MMD access control register

Bit	Symbol	Access	Default	Description
15:14	Function	RW	2'b0	00 = Address
				01 = Data, no post increment
				10 = Data, post increment on reads and writes

裕太微电子

Motorcomm YT8510H_YT8510C Datasheet

				11 = Data, post increment on writes only
13:5	Reserved	RO	9'b0	Always 0
4:0	DEVAD	RW	5'b0	MMD register device address.
				00001 = MMD1
				00011 = MMD3
				00111 = MMD7

6.2.1.11. MII register 0Eh: MMD access data register

Bit	Symbol	Access	Default	Description
15:0	Address_data	RW	16'b0	If register 0xD bits [15:14] are 00, this register is used as MMD
				DEVAD address register. Otherwise, this register is used as MMD
				DEVAD data register as indicated by its address register.

6.2.1.12. Mii register 0Fh: Extended status register

Bit	Symbol	Access	Default	Description
15	1000Base-X_Fd	RO	1'b0	PHY not able to support 1000Base-X_Fd
14	1000Base-X_Hd	RO	1'b0	PHY not able to support 1000Base-X_Hd
13	1000Base-T_Fd	RO	1'b0	PHY not able to support 1000Base-T_Fd
12	1000Base-T_Hd	RO	1'b0	PHY not able to support 1000Base-T_Hd
11:8	Reserved	RO	1'b0	Reserved
7	100Base-T1	RO	1'b1	PHY able to support 100Base-T1
6	1000Base-T1	RO	1'b0	PHY not able to support 1000Base-T1
5:0	Reserved	RO	6'b0	Reserved

6.2.1.13. MII register 10h: PHY specific function control register

Bit	Symbol	Access	Default	Description
15:7	Reserved	RO	9'b0	Always 0.
6:5	Cross_md	RW	2'b11	Changes made to these bits disrupt normal operation, thus a software reset is mandatory after the change. And the configuration does not take effect until software reset. 00 = Manual MDI configuration

				01 = Manual MDIX configuration		
				10 = Reserved		
				11 = Enable automatic crossover for all modes		
4	Int_polar_sel	RW	1'b0	To control the polarity of interrupt PINs.		
				0 =when used as interrupt, INTn_LED is active LOW;		
				1 = when used as interrupt, INTn_LED is active HIGH.		
3	Crs_on_tx	RW	1'b0	This bit is effective in 10BASE-Te half-duplex mode and 100BASE-		
				TX mode:		
				1 = Assert CRS on transmitting or receiving		
				0 = Never assert CRS on transmitting, only assert it on receiving.		
2	En_sqe_test	RW	1'b0	1 = SQE test enabled		
				0 = SQE test disabled		
				Note: SQE Test is automatically disabled in full-duplex mode		
				regardless the setting in this bit.		
1	En_pol_inv	RW	1'b1	If polarity reversal is disabled, the polarity is forced to be normal in		
	poi_m	12,11		10BASE-Te.		
			3	1 = Polarity Reversal Enabled		
				0 = Polarity Reversal Disabled		
	D: :1	DW	121.0			
0	Dis_jab	RW	1'b0	Jabber takes effect only in 10BASE-Te half-duplex mode.		
				1 = Disable jabber function		
			7	0 = Enable jabber function		

6.2.1.14. MII register 11h: PHY specific status register

Bit	Symbol	Access	Default	Description
15:14	Speed_mode	RO	2'b00	These status bits are valid only when any bit in bit9:7 and bit3:2 is 1. 11 = Reserved 01 = 100 Mbps 00 = 10 Mbps

13	Duplex	RO	1'b0	This status bit is valid only when bit11 is 1. Bit11
	r			is set when Auto-Negotiation is completed or
				Auto-Negotiation is disabled.
				1 = Full-duplex
				0 = Half-duplex
12	Page_Received_real-time	RO	1'b0	1 = Page received
				0 = Page not received
11	Speed_and_Duplex_Resolved	RO	1'b0	When Auto-Negotiation is disabled, this bit is set
				to
				1 for force speed mode.
				1 = Resolved
				0 = Not resolved
10	Link_status_real-time	RO	1'b0	1 = Link up
				0 = Link down
9	En_fe_100	RO	1'b0	
8	En_fe_10	RO	1'b0	/
7	Lds_en_autoneg	RO	1'b0	
6	MDI_Crossover_Status	RO	1'b0	This status bit is valid only when bit11 is 1. Bit11
				is set when Auto-Negotiation is completed or
				Auto-Negotiation is disabled.
				The bit value depends on register 0x10 "PHY
				specific function control register" bits6~bit5
				configurations. Register 0x10 configurations take
				effect after software reset.
				1 = MDIX
				0 = MDI
5	Wirespeed_downgrade	RO	1'b0	1 = Downgrade
				0 = No Downgrade
4	Reserved	RO	1'b0	Always 0.
3	En_ae_100	RO	1'b0	

2	En_ae_10	RO	1'b0	
1	Polarity_Real_Time	RO	1'b0	1 = Reverted polarity
				0 = Normal polarity
0	Jabber_Real_Time	RO	1'b0	1 = Jabber is asserted.
				0 = No jabber

6.2.1.15. MII register 12h: Interrupt Mask Register

Bit	Symbol	Access	Default	Description
15	Auto-Negotiation_Error_int _mask	RW	1'b0	1 = Interrupt enable
			A	0 = Interrupt disable
14	Speed_Changed_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
13	Duplex_changed_int_mask	RW	1'b0	1 = Interrupt enable
		7)		0 = Interrupt disable
12	Page_Received_int_mask	RW	1'b0	1 = Interrupt enable
		/		0 = Interrupt disable
11	Link_Failed_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
10	Link_Succeed_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
9	IEEE1588_Misc_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
8	IEEE1588_Rx PTP_message_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
7	IEEE1588_Tx PTP_message_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
6	WOL_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
5	Wirespeed_downgraded_int_mask	RW	1'b0	1 = Interrupt enable

松太微电子

Motorcomm YT8510H_YT8510C Datasheet

				0 = Interrupt disable
4:2	Reserved	RW	3'b0	No used.
1	Polarity_changed_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable
0	Jabber_Happened_int_mask	RW	1'b0	1 = Interrupt enable
				0 = Interrupt disable

6.2.1.16. MII register 13h: Interrupt Status Register

Bit	Symbol	Access	Default	Description
15	Auto-Negotiation_Error_INT	RO RC	1'b0	Error can take place when any of the following happens: MASTER/SLAVE does not resolve correctly Parallel detect fault No common HCD Link does not come up after negotiation is complete Selector Field is not equal flp_receive_idle=true while Autoneg Arbitration FSM is in NEXT PAGE WAIT state 1 = Auto-Negotiation Error takes place
14	Speed_Changed_INT	RO RC	1'b0	0 = No Auto-Negotiation Error takes place 1 = Speed changed 0 = Speed not changed
13	Duplex_changed_INT	RO RC	1'b0	1 = duplex changed 0 = duplex not changed
12	Page_Received_INT	RO RC	1'b0	1 = Page received 0 = Page not received
11	Link_Failed_INT	RO RC	1'b0	1 = Link down takes place 0 = No link down takes place

			1	MotorComm
10	Link_Succeed_INT	RO	1'b0	1 = Link up takes place
		RC		0 = No link up takes place
9	IEEE1588_Misc_INT	RO	1'b0	1 = IEEE1588 module's MISC interrupt
		RC		happened
				0 = IEEE1588 module's MISC interrupt didn't
				•
				happen
8	IEEE1588_Rx_PTP_message_INT	RO	1'b0	1 = PHY received 1588 message
		RC		0 = PHY didn't receive 1588 message
7	IEEE1588 Tx PTP message INT	RO	1'b0	1 = PHY transmitted 1588 message
		RC		0 = PHY didn't transmit 1588 message
6	WOL_INT	RO	1'b0	1 = PHY received WOL magic frame.
		RC		0 = PHY didn't receive WOL magic frame.
5	Wirespeed_downgraded_INT	RO	1'b0	1 = speed downgraded.
		RC		0 = Speed didn't downgrade.
4:2	Reserved	RO	3'b0	Not used.
		RC		
		7.0	111.0	
1	Polarity_changed_INT	RO	1'b0	1 = PHY revered MDI polarity
		RC		0 = PHY didn't revert MDI polarity
0	Jabber_Happened_INT	RO	1'b0	1 = 10BaseT TX jabber happened
		RC		0 = 10BaseT TX jabber didn't happen
		l	L	<u> </u>

6.2.1.17. MII register 14h: Speed Auto Downgrade Control Register

Bit	Symbol	Access	Default	Description
15:12	Reserved	RO	4'b0	Always 0.
11	En_mdio_latch	RW	1'b1	1 = To latch MII/MMD register's read out value during MDIO read 0 = Do not latch MII/MMD register's read out value during MDIO read
10	Start_autoneg	RW SC	1'b0	Set it to cause PHY to restart auto-negotiation.

9	Reverse_autoneg	RW	1'b0	1 = reverse the autoneg direction, 10Mb/s has 1st priority, then 100Mb/s and at last 1000Mb/s. 0 = normal autoneg direction.
8	Dis_giga	RW	1'b0	1 = disable advertise Giga ability in autoneg; 0 = don't disable, so PHY advertises Giga ability based on MII register 0x9.
7	Reserved	RW	1'b0	Shall always be written to 0. Writing this bit requires a software reset to update.
6	Reserved	RW	1'b0	Shall always be written to 0. Writing this bit requires a software reset to update.
5	En_speed_downgrade	RW	1'b1	When this bit is set to 1, the PHY enables smart-speed function. Writing this bit requires a software reset to update.
4:2	Autoneg retry limit pre- downgrade	RW	3'b011	If these bits are set to 3, the PHY attempts five times (set value 3 + additional 2) before downgrading. The number of attempts can be changed by these bits.
1	Bp_autospd_timer	RW	1'b0	1 = the wirespeed downgrade FSM will bypass the timer used for link stability check; 0 = not bypass the timer, then links that established but hold for less than 2.5s would still be taken as failure, autoneg retry counter will increase by 1.
0	Reserved	RO	1'b0	Always 0.

6.2.1.18. MII register 15h: Rx Error Counter Register

Bit	Symbol	Access	Default	Description
15:0	Rx_err_counter	RO	16'b0	This counter increase by 1 at the 1st rising of RX_ER when RX_DV is 1. The counter will hold at maximum 16'hFFFF and not roll over. If speed mode is 2'b01, it counts for fe_100 RX_ER; Else, it's 0.

6.2.1.19. MII register 1Eh: Debug Register's Address Offset Register

Bit	Symbol	Access	Default	Description
15:0	Extended_Register_Address _Offset	RW	16'h0	It's the address offset of the extended register that will be Write or Read

6.2.1.20. MII register 1Fh: Debug Register's Data Register

Bit	Symbol	Access	Default	Description
15:0	Extended_Register_Data	RW	16'b0	It's the data to be written to the extended
				register indicated by the address offset in
				register 0x1E, or the data read out from that
				debug register.

6.2.2. Lds mii registers

6.2.2.1. Lds register 00h: LRE control

Bit	Symbol	Access	Default	Description
15	Reset	RW SC	1'b0	PHY Software Reset. Writing 1 to this bit causes immediate PHY reset. Once the operation is done, this bit is cleared automatically. 1'b0: Normal operation 1'b1: PHY reset
14	Loopback	RW	1'b0	Loopback control 1'b0: disable loopback 1'b1: enable loopback
13	Restart_LDS	RW SC	1'b0	1'b1: restart LDS process
12	LDS_Enable	RW	1'b1	1'b1: LDS enabled 1'b0: LDS disabled

11	Power_down	RW	1'b0	1 = Power down
				0 = Normal operation
				When the port is switched from power down to
				normal operation, software reset and Auto-
				Negotiation are performed even bit[15] RESET and bit[9]
				RESTART_AUTO_NEGOTIATION are not set by the user.
10	Isolate	RW	1'b0	Isolate phy from MII/GMII/RGMII: PHY will not respond to
				RGMII TXD/TX_CTL, and present high impedance on
				RXD/RX_CTL.
				1'b0: Normal mode
				1'b1: Isolate mode
9:6	Speed_selection	RW	4'h0	4'b0000: 10Mbps
				4'b1000: 100Mbps
				Others: reserved
5:4	Pair_selection	RW	2'b00	2'b00: 1 pair connection
				2'b01: 2 pair connections
			9	2'b10: 4 pair connections
				2'b11: reserved
3	M/S_selection	RW	1'b0	1'b1: manually force local device to master, when $reg0.12 = 0$
	W/S_selection	A.	1 00	
				1'b0: manually force local device to slave, when $reg0.12 = 0$
2	Force auto	RW	1'b0	1'b1: manually force local device to auto negotiation state, when
	negotiation			reg0.12 = 0
1:0	Reserved	RW	2'b00	Reserved. Write as 0, ignore on read
1.0			_ 500	

6.2.2.2. Lds register 01h: LRE status

Bit	Symbol	Access	Default	Description
15:14	Reserved	RO	2'b00	Ignore on read

				Motor Comm
13	100Mbps_1-pair capable	RO	1'b1	1'b1: 100Mbps 1-pair capable
				1'b0: Not 100Mbps 1-pair capable
12	100Mbps_4-pair capable	RO	1'b0	1'b1: 100Mbps 4-pair capable
				1'b0: Not 100Mbps 4-pair capable
11	100Mbps_2-pair capable	RO	1'b1	1'b1: 100Mbps 2-pair capable
				1'b0: Not 100Mbps 2-pair capable
10	10Mbps_2-pair capable	RO	1'b1	1'b1: 10Mbps 2-pair capable
				1'b0: Not 10Mbps 2-pair capable
9	10Mbps_1-pair capable	RO	1'b1	1'b1: 10Mbps 1-pair capable
				1'b0: Not 10Mbps 1-pair capable
8	Extended_Status	RO	1'b1	Whether support extended status register in
				0Fh
				0: Not supported
				1: Supported
7	Reserved	RO	1'b1	
6	Mf_Preamble_Suppression	RO	1'b1	1'b0: PHY will not accept management
				frames with preamble suppressed
				1'b1: PHY will accept management frames
				1'b1: PHY will accept management frames with preamble suppressed
5	LDS_Complete	RO	1'b0	
5	LDS_Complete	RO	1'b0	with preamble suppressed
5	Support_IEEE_802.3	RO	1'b0 1'b1	with preamble suppressed 1'b1: LDS auto-negotiation complete
				with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete
	Support_IEEE_802.3			with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete 1'b1: Support IEEE 802.3 PHY operation
	Support_IEEE_802.3			with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete 1'b1: Support IEEE 802.3 PHY operation 1'b0: Not Support IEEE 802.3 PHY
4	Support_IEEE_802.3 _PHY	RO	1'b1	with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete 1'b1: Support IEEE 802.3 PHY operation 1'b0: Not Support IEEE 802.3 PHY operation
4	Support_IEEE_802.3 _PHY	RO	1'b1	with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete 1'b1: Support IEEE 802.3 PHY operation 1'b0: Not Support IEEE 802.3 PHY operation 1'b1: LDS auto-negotiation capable
4	Support_IEEE_802.3 _PHY	RO	1'b1	with preamble suppressed 1'b1: LDS auto-negotiation complete 1'b0: LDS auto-negotiation not complete 1'b1: Support IEEE 802.3 PHY operation 1'b0: Not Support IEEE 802.3 PHY operation 1'b1: LDS auto-negotiation capable

2	Link_Status	RO	1'b0	Link status
				1'b0: Link is down
				1'b1: Link is up
1	Jabber_Detect	RO,	1'b0	10Baset jabber detected
		LH		1'b0: no jabber condition detected
				1'b1: Jabber condition detected
0	Extended_Capability	RO	1'b1	To indicate whether support extended
		H		registers, to access from address register
				1Eh and data register 1Fh
				1'b0: Not supported
				1'b1: Supported

6.2.2.3. Lds register 02h: PHY ID

Bit	Symbol	Access	Default	Description
15:0	PHY_ID	RO	16'h0000	Bits 3 to 18 of the Organizationally Unique Identifier

6.2.2.4. Lds register 03h: PHY ID

Bit	Symbol	Access	Default	Description
15:10	Phy_Id	RO	6'b0	Bits 19 to 24 of the Organizationally Unique Identifier
9:4	Type_No	RO	6'h10	6 bits manufacturer's type number
3:0	Revision_No	RO	4'h9	4 bits manufacturer's revision number

6.2.2.5. Lds register 04h: LDS auto-negotiation advertised ability

Bit	Symbol	Access	Default	Description
15	Asymmetric_pause	RW	1'b0	1'b1: Advertise asymmetric pause
				1'b0: Advertise no asymmetric pause
14	Pause_capable	RW	1'b0	1'b1: Advertise pause capable
				1'b0: Advertise no pause capable
13:6	Reserved	RW	8'h00	reserved

裕太微电子

Motorcomm YT8510H_YT8510C Datasheet

5	100Mbps_1-pair	RW	1'b1	1'b1: 100Mbps 1-pair capable
	capable			1'b0: Not 100Mbps 1-pair capable
4:2	Reserved	RW	3'b0	reserved
1	10Mbps_1-pair	RW	1'b1	1'b1: 10Mbps 1-pair capable
	capable			1'b0: Not 10Mbps 1-pair capable
0	Auto negotiation	RW	1'b1	1'b1: Auto negotiation capable
	capable			1'b0: Auto negotiation capable

6.2.2.6. Lds register 05h: LDS auto-negotiation advertised control

Bit	Symbol	Access	Default	Description
15:13	Test_Mode	RW	3'b000	Test Mode control
12:10	Reserved	RW	3'b000	
9	Port_type_preference	RW	1'b0	1'b1: multiport device (Mater) 1'b0: single-port device (Salve)
8	Ability_field_update	RW SC	1'b0	1'b1: Contents of register 06h are updated 1'b0: No updates
7:0	Local_field_number	RW	8'h00	Local field number of Next Page message

6.2.2.7. Lds register 06h: LDS ability next page transmit

Bit	Symbol	Access	Default	Description
15:0	Next_page_message	RW	16'h0000	LDS next page message

6.2.2.8. Lds register 07h: LDS link partner ability

Bit	Symbol	Access	Default	Description
15	Asymmetric_pause	RO	1'b0	1'b1: link partner supports asymmetric pause
				1'b0: link partner doesn't support asymmetric pause
14	Pause_capable	RO	1'b0	1'b1: link partner supports pause capable
				1'b0: link partner doesn't support pause capable

				MotorComm
13:6	Reserved	RO	8'h00	
5	100Mbps_1- pair_capable	RO	1'b0	1'b1: link partner 100Mbps 1-pair capable 1'b0: link partner not 100Mbps 1-pair capable
4	100Mbps_4- pair_capable	RO	1'b0	1'b1: link partner 100Mbps 4-pair capable 1'b0: link partner not 100Mbps 4-pair capable
3	100Mbps_2- pair_capable	RO	1'b0	1'b1: link partner 100Mbps 2-pair capable 1'b0: link partner not 100Mbps 2-pair capable
2	10Mbps_2- pair_capable	RO	1'b0	1'b1: link partner 10Mbps 2-pair capable 1'b0: link partner not 10Mbps 2-pair capable
1	10Mbps_1- pair_capable	RO	1'b0	1'b1: link partner 10Mbps 1-pair capable 1'b0: link partner not 10Mbps 1-pair capable
0	Reserved	RO	1'b0	

6.2.2.9. Lds register 08h: LDS link partner next page message

Bit	Symbol	Access	Default	Description
15:0	Link_partner_next_page_message	RO	16'h0000	LDS link partner next page message

6.2.2.10. Lds register 09h: LDS link partner next page message control

Bit	Symbol	Access	Default	Description
	Y			
15	Next_page_read_flag	RW	1'b0	1'b1: next page has been read
		SC		
14:9	Reserved	RO	6'h00	
8	Remote_acknowledge	RO	1'b0	1'b1: acknowledge from link partner
		CR		
7:0	Remote_field_number	RO	8'hff	Remote field number of next page message

6.2.2.11. Lds register 0Ah: LDS expansion

Bit	Symbol	Access	Default	Description
15	Downgrade_ability	RO	1'b0	1'b1: LDS speed downgrade
14	Master/Slave	RO	1'b0	1 = Local PHY configuration resolved to Master 0 = Local PHY configuration resolved to Slave
13:12	Connections_pairs	RO	2'b00	Number of pairs 2'b00: 1 pair 2'b01: 2 pairs 2'b10: 4 pairs 2'b11: reserved
11:0	Estimated_cable_length	RO	12'h000	

6.2.2.12. Lds register OBh: LDS Results

Bit	Symbol	Access	Default	Description
15:5	Reserved	RO	1'b0	717
4	Auto_negotiation	RO	1'b0	1'b1: local PHY configuration resolved to AN
3	1-pair_100M	RO	1'b0	1'b1: local PHY configuration resolved to 1-pair 100M
2	1-pair_10M	RO	1'b0	1'b1: local PHY configuration resolved to 1-pair 10M
1	2-pair_100M	RO	1'b0	1'b1: local PHY configuration resolved to IEEE 100M
0	2-pair_10M	RO	1'b0	1'b1: local PHY configuration resolved to IEEE 10M

6.2.2.13. Lds register 0Fh: LDS Extended status

Bit	Symbol	Access	Default	Description
15:10	Reserved	RO	6'h00	Reserved
9	Local receiver status	RO	1'b0	1'b1: local receiver ok 1'b0: local receiver not ok
8	Remote receiver status	RO	1'b0	1'b1: remote receiver ok 1'b0: remote receiver not ok
7:0	Idle_error_count	RO	8'h00	Number of idle errors since last read

6.2.3. Extended registers

6.2.3.1. Extended Register 100h: IEEE/LDS Register Select

Bit	Symbol	Access	Default	Description
15:3	Reserved	R/W	13'h0000	
2	Acc_ctrl_ovrd_en	R/W	1'b0	Access control override enble
				1'b1: override LRE register access
				1'b0: Normal operation
1	Acc_ctrl_ovrd_val	R/W	1'b0	1'b1: Access IEEE registers
				1'b0: Access LRE registers
0	Acc_ctrl_val	RO	1'b0	1'b1: LRE register is active
				1'b0: IEEE register is active

6.2.3.2. Extended Register 2009h: 100BT Extra Test Mode

Bit	Symbol	Access	Default	Description
15	Reserved	RW SC	1'b1	Not used.
14:8	Reserved	RO	7'b0	Always 0.
7	Jitter_test	RW	1'b0	Jitter test
6	Over_Shoot_Test	RW	1'b0	Overshoot test
5	Dcd_test	RW	1'b0	Duty cycle distortion test
4:3	Reserved	RW	2'b0	
2:1	Reserved	RW	2'b0	
0	Reserved	RW	1'b0	

6.2.3.3. Extended Register 200Ah: 10BT Debug, LPBKs

Bit	Symbol	Access	Default	Description
15:14	Reserved	RW	2'b01	
13:12	Reserved	RW	2'b00	
11	Reserved	RW	1'b1	

10	T. 101 . 11	D. 1. 1.	4.1.0	MOUOT COININ
10	En_10bt_idl	RW	1'b0	= In 10BT mode, if there's no data or NLP to transmit, shut
				off DAC; otherwise turn on the DAC;
				0 = In 10BT, DAC will not be turn off.
9	Reserved	RW	1'b0	
9	Reserved	KW	1 00	
8:6	Reserved	RW	3'b0	Not used.
5	Reserved	RW	1'b0	_
4	Reserved	RW	1'b0	
3	Reserved	RW	1'b1	
3	Reserved		1 01	
		SWS		0 6/39
2.0	T 101-4	DW	221-0	Tt 1-[2:0] :- f 10DT tt 1t
2:0	Test_mode_10bt	RW	3'b0	Test_mode[2:0] is for 10BT test mode select:
		SWC		3'b001: packet with all ones, 10MHz sine wave, For harmonic
				test.
				3'b010: pseudo random, for TP_IDLE/Jitter/ Differential
				Voltage test.
				Voltage test.
				3'b011: normal link pulse only,
			/	
				3'b100: 5MHz sin wave.
				Others: normal mode.

6.2.3.4. Extended Register 2027h: Sleep Control1

Bit	Symbol	Access	default	Description
15	En_sleep_sw	RW	1'b1	1 = enable sleep mode: PHY will enter sleep mode and close AFE after unplug cable for a timer;
14	Pllon_in_slp	RW	1'b0	
13	Reserved	RW	1'b1	
12	Reserved	RW	1'b0	
11:6	Reserved	RO	6'b0	Always 0.
5	Sleeping	RO	1'b0	1= PHY is slept; 0 = PHY is active.
4	Reserved	RO	1'b0	Not used.

3:0	Slp_state	RO	4'b0	FSM state of internal sleep control logic.

6.2.3.5. Extended Register 2028h: Sleep Control2

Bit	Symbol	Access	default	Description
15:14	Reserved	RO	2'b0	Always 0.
13:0	Sel_timer	RW	14'h2AAA	Timers to control update AFE step by step.

6.2.3.6. Extended Register 4000h: extended combo control1

Bit	Symbol	Access	default	Description
15:13	MII_mode	RW	3'b000	MII mode selection 3'b000: MII mode 3'b010: RMII mode(50MHz input at TXC) 3'b001: RMII mode(25MHz XTAL) 3'b110: RGMII mode 3'b100: REMII mode(Reversed MII) Others: reserved
12	External_Loopback	RW	1'b0	External loopback control 1'b0: disable 1'b1: enable
11	Remote_Loopback	RW	1'b0	Remote loopback control 1'b0: disable 1'b1: enable
10:6	Reserved	RW	5'b0	
5	Jumbo_Enable	RW	1'b0	Enable Jumbo frame reception up to 18KB frame, when disabled only up to 4.5KB frame supported 0: disable jumbo frame reception 1: enable jumbo frame reception
4:0	Reserved	RW	6'b0	Reserved

6.2.3.7. Extended Register 4001h: extended pad control

Bit	Symbol	Access	default	Description
15	Reserved	RO	1'b0	Reserved
14	Int_led_sel	RW	1'b0	1'b1: interrupt selected
				1'b0: led selected
13:12	Xmii_dr_rgmii	RW	2'b11	Rgmii pad diver strength
11	Rxc_In_Sel	RW	1'b0	Select rxc_in edge used to latch data
10	Rxc_Out_Sel	RW	1'b0	Select rxc_out edge used to latch data
9	Txc_In_Sel	RW	1'b0	Select txc_in edge used to latch data
8	Txc_Out_Sel	RW	1'b0	Select Txc_out edge used to latch data
7:6	Int_N_Led_Dr	RW	2'b11	Int_n_led pin driver strength control
5:4	Xmii_Dr	RW	2'b10	Xmii interface driver strength control
3:2	Mdio_Dr	RW	2'b11	Mdio pin driver strength control
1:0	Sync_Io_Dr	RW	2'b11	Sync_io pin driver strength control
			1	

6.2.3.8. Extended Register 4002h: extended clock delay control

Bit	Symbol	Access	default	Description
15:12	Mii_Rxc_Delay_Sel	RW	4'd0	Rxc out delay sel
11:8	Mii_Txc_Delay_Sel	RW	4'd0	Txc in delay sel
7:4	Rgmii_Rxc_Delay_Sel	RW	4'd10	Rxc out delay sel
3:0	Rgmii_Txc_Delay_Sel	RW	4'd10	Txc in delay sel

6.2.3.9. Extended Register 4080h: VCT control

Bit	Symbol	Access	default	Description
15:13	Small_gap_th	RW	3'd4	Small_gap_threshold[9:5]. Valid only when far-end echo is found but its location after being compensated is not farther than near-end echo's location. In this case, if the two locations' difference is smaller than the small_gap_threshold, the pair status judged by the far-end echo would be taken as valid, but the location of open/short would be fixed to 100cm.

				Motor comm
				Real threshold = small_gap_th * 96 cm.
12:10	Vct_auto_gain_min	RW	3'd4	It's the minimal AGC gain that the automatic AGC gain
				adjustment logic in VCT could reach in VCT test.
				Real threshold = Vct_auto_gain_min * 2.
				It's valid only when en_vct_manu_gain is 0.
9:4	Vct_manu_gain	RW	6'd12	The fixed AGC gain used during VCT test. It's valid only
				when en_vct_manu_gain is 1.
3	En_vct_manu_gain	RW	1'b1	To using fixed AGC gain during VCT test.
				1, enable; 0, AGC gain will be adjusted automatic in VCT
				test.
2	Vct_tlp_sel	RW	1'b1	To send +1 or -1 symbol during VCT test.
				1, to send -1 symbol; 0, to send +1 symbol.
				1, to send 1 symbol, o, to send 11 symbol.
1	En_inter_pair_chk	RW	1'b0	
0	En_run_vct	RW	1'b0	At the rising edge of this bit, VCT test will start.
		SC		When en_vct is asserted, VCT module takes the control of
				analog's ADC/DAC/VGA, checks all the 4 pairs intra status
				and inter status, then report the status in registers.
				This bit is self-clear after VCT test is done.

6.2.3.10. Extended Register 4081h: VCT control

Bit	Symbol	Access	default	Description
15	En_chk_fe_found_cnt	RW	1'b1	To enable to check the times that far-end echo was found during the VCT test. If the times that far-end echo was found is not bigger than the fe_found_cnt_th, the echo would be taken as invalid.
14:10	Fe_found_cnt_th	RW	5'd25	See en_chk_fe_found_cnt. Real threshold = Fe_found_cnt_th * 2.
9:8	Vct_record_cfg	RW	2'b0	Control to record which VCT test case's result: The VCT case is: TX on vct_record_cfg[1] channel and RX on vct_record_cfg[0] channel.

7:0	Busy_det _th	RW	8'd32	The amplitude threshold to judge RX channel is not idle.
				During VCT RX busy detection, if RX signals' amplitude
				is large than this threshold, RX channel will be treated as
				busy and VCT test will quit.

6.2.3.11. Extended Register 4082h: VCT control

Bit	Symbol	Access	default	Description
15:8	Fecho_amp_th	RW	8'd16	The amplitude threshold to judge far-end echo. During VCT far- end echo detection, the reflections larger than this will be treated as echoes.
7:0	Necho_amp_th	RW	8'd32	The amplitude threshold to judge near-end echo. During VCT near- end echo detection, the reflections larger than this will be treated as echoes

6.2.3.12. Extended Register 4083h: VCT control

Bit	Symbol	Access	default	Description
15	Reserved	RO	1'b0	Always 0.
14	Ignore_ne_found	RW	1'b1	1 = don't check near-end echo is found or not.
13	Bp_ne_loc	RW	1'b0	1 = instead of the tested near-end echo's location, to use the expected one while calculating the damage location.
12	Vct_fix_echo_dac	RW	1'b1	1 = always open echo DAC while doing VCT; 0 = clock echo DAC while detecting near-end echo and open echo DAC while detecting far-end echo.
11:0	Reserved	RW	12'h327	

6.2.3.13. Extended Register 4084h: VCT status

Bit	Symbol	Access	default	Description
15	Vct_in_process	RO	1'b0	
14	Reserved			
13:12	Rcd_mdi_busy	RO	2'b0	
11:10	Reserved	RO	2'b0	

Inter_err	RO	2'b0	Error status while doing inter pair test between the 2 channel.
			00 = no error happened.
			01 = error happened while doing inter pair test when TX on pair 1
			and RX on pair 0.
			10 = error happened while doing inter pair test when TX on pair 0
			and RX on pair 1
			11 = error happened while doing inter pair test on both pair.
Reserved	RO	2'b0	
Inter_st	RO	2'b0	Inter pair status between channel 3 and other three channels.
			00 = the 2 pair is not short with each other;
			Else = the 2 pair is short with each other.
Self st 1	RO	2'b0	Intra pair status of pair 1.
			00: normal, pair impedance matches.
			01: error happened during last VCT test, the error may be RX
			channel is busy, no near-end echo was detected, or the location of
			far-end echo was not farther than that of near-end echo and the
			gap between near-end echo and far-end echo is not small;
			10: pair is short;
			11: pair is open.
Self_st_0	RO	2'b0	Intra pair status of pair 0.
			00: normal, pair impedance matches.
			01: error happened during last VCT test, the error may be RX
			channel is busy, no near-end echo was detected, or the location of
			far-end echo was not farther than that of near-end echo and the
			gap between near-end echo and far-end echo is not small;
			10: pair is short;
			11: pair is open.
	Reserved Inter_st Self_st_1	Reserved RO Inter_st RO Self_st_1 RO	Reserved RO 2'b0 Inter_st RO 2'b0 Self_st_1 RO 2'b0

6.2.3.14. Extended Register 4085h: VCT status

Bit	Symbol	Access	default	Description
15	Reserved	RO	1'b0	

14:0	Self_dmg_loc_0	RO	16'h0	The intra pair damage location of channel 0. In unit cm.

6.2.3.15. Extended Register 4086h: VCT status

Bit	Symbol	Access	default	Description
15	Reserved	RO	1'b0	
			4 44 0	
14:0	Self_dmg_loc_1	RO	16'h0	The intra pair damage location of channel 1. In unit cm.

6.2.3.16. Extended Register 4087h: VCT status

Bit	Symbol	Access	default	Description
15:0	Inter_dmg_loc_0	RO	16'h0	The inter pair damage location of channel 0. In unit cm.

6.2.3.17. Extended Register 4088h: VCT status

Bit	Symbol	Access	default	Description
15:0	Inter_dmg_loc_1	RO	16'h0	The inter pair damage location of channel 1. In unit cm.

6.2.3.18. Extended Register 4089h: VCT status

Bit	Symbol	Access	default	Description	
15	Ne_found	RO	1'b0	Near-end echo was found in last intermediate VCT test.	
14	Reserved	RO	1'b0	No use.	
13:8	Ne_loc_phs	RO	6'b0	The phase index of the location of the near-end echo.	
7:0	Ne_loc_cycle	RO	8'b0	The location of the near-end echo, in unit of symbol cycle, which is 8ns.	

6.2.3.19. Extended Register 408Ah: VCT status

Bit	Symbol	Access	default	Description
15	Fe_found	RO	1'b0	Far-end echo was found in last intermediate VCT test.
14	Reserved	RO	1'b0	No use.
13:8	Fe_loc_phs	RO	6'b0	The phase index of the location of the Far-end echo
7:0	Fe_loc_cycle	RO	8'b0	The location of the Far-end echo, in unit of symbol cycle, which is
				8ns

6.2.3.20. Extended Register 408Bh: VCT status

Bit	Symbol	Access	default	Description
15:8	Fe_max_amp	RO	8'b0	The far-end echo's amplitude in last intermediate VCT test.
6:0	Ne_max_amp	RO	8'b0	The near-end echo's amplitude in last VCT test.

6.2.3.21. Extended Register 408Ch: VCT status

Bit	Symbol	Access	default	Description
15:6	Reserved	RO	10°b0	No use.
5:0	Fe_found_cnt	RO	6'b0	The times far-end echo was found in last intermediate VCT test.

6.2.3.22. Extended Register 408Dh: VCT status

Bit	Symbol	Access	default	Description
15:14	Reserved	RO	2'b0	Always 0.
13:8	Vct_used_agc_1	RO	6'd0	The AGC gain used for channel 1 while doing VCT and rx_pair=1.
7:6	Reserved	RO	2'b0	Always 0.
5:0	Vct_used_agc_1	RO	6'd0	The AGC gain used for channel 0 while doing VCT and rx_pair=0.

6.2.3.23. Extended Register 408Eh: VCT status

Bit	Symbol	Access	default	Description
	•			
15:14	Reserved	RO	2'b0	Always 0.
13:0	Expect_ne_loc	RW	14'd700	The expected location of near-end echo. It's only valid when
				4083h bit13 is 1.

6.2.3.24. Extended Register 40A0h: pkg_selftest control

Bit	Symbol	Access	default	Description
15	Pkg_chk_en	RW	1'b0	1: to enable RX/TX package checker. RX checker checks the
				MII data at transceiver's PCS RX; TX checker checks the
				MII data at mii_bridge's TX.

14	Pkg_en_gate	RW	1'b1	1: to enable gate all the clocks to package self-test module
				when bit15 pkg_chk_en is 0, bit13 bp_pkg_gen is 1 and
				bit12 pkg_gen_en is 0;
				0: not gate the clocks.
13	Bp_pkg_gen	RW	1'b1	1: normal mode, to send xMII TX data from PAD;
				0: test mode, to send out the MII data generated by pkg_gen
				module.
12	Pkg_gen_en	RW	1'b0	1: to enable pkg_gen generating MII packages. But, the data
		SC		will only be sent to transceiver when Bit13 bp_pkg_gen is
				1'b0.
				If pkg_burst_size is 0, continuous packages will be
				generated and will be stopped only when pkg_gen_en is set
				to 0;
				Otherwise, after the expected packages are generated,
				pkg_gen will stop, pkg_gen_en will be self-cleared.
11:8	Pkg_prm_lth	RW	4'd8	The preamble length of the generated packages, in Byte unit.
				Pkg_gen function only support >=2 Byte preamble length.
				Values smaller than 2 will be ignored by the pkg_gen
		3		module.
7:4	Pkg_ipg_lth	RW	4'd12	The IPG of the generated packages, in Byte unit. Pkg_gen
				function only support >=2 Byte preamble length. Values
				smaller than 2 will be ignored by the pkg_gen module.
3	Xmit_mac_force_gen	RW	1'b0	1: To enable pkg_gen to send out the generated data even
				when the link is not established.
2	Pkg_corrupt_crc	RW	1'b0	1: to make pkg_gen to send out CRC error packages.
				0: pkg_gen sends out CRC good packages.
1:0	Pkg_payload	RW	2'b0	Control the payload of the generated packages.
				00: increased Byte payload;
				01: random payload;
				10: fix pattern 0x5AA55AA5
				11: reserved.
	L	<u> </u>		

Bit	Symbol	Access	default	Description
15:0	Pkg_length	RW	16'd64	To set the length of the generated packages.

6.2.3.26. Extended Register 40A2h: pkg_selftest control

Bit	Symbol	Access	default	Description
15:0	Pkg_burst_size	RW	16'b0	To set the number of packages in a burst of package generation.
				0: continuous packages will be generated.

6.2.3.27. Extended Register 40A3h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_valid_high	RO	16'b0	Pkg_ib_valid[31:16], pkg_ib_valid is the number of RX
				packages from wire whose CRC are good and length are
				>=64Byte and <=1518Byte.

6.2.3.28. Extended Register 40A4h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_valid_low	RO	16'b0	Pkg_ib_valid[15:0], pkg_ib_valid is the number of RX packages
				from wire whose CRC are good and length are >=64Byte and
				<=1518Byte.

6.2.3.29. Extended Register 40A5h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_os_good_high	RO	16'b0	Pkg_ib_os_good[31:0], pkg_ib_os_good is the number of
				RX packages from wire whose CRC are good and length are >1518Byte.

6.2.3.30. Extended Register 40A6h: pkg_selftest status

Bit	Symbol	Access	default	Description
· ·				
15:0	Pkg_ib_os_good_low	RO	16'b0	Pkg_ib_os_good[15:0], pkg_ib_os_good is the number of
				RX packages from wire whose CRC are good and length are
				>1518Byte.

6.2.3.31. Extended Register 40A7h: pkg_selftest status

Bit	Symbol	Access	default	Description

1	15:0	Pkg_ib_us_good_high	RO	16'b0	Pkg_ib_us_good[31:0], pkg_ib_us_good is the number of
					RX packages from wire whose CRC are good and length are
					<64Byte.

6.2.3.32. Extended Register 40A8h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_us_good_low	RO	16'b0	Pkg_ib_us_good[15:0], pkg_ib_us_good is the number of
				RX packages from wire whose CRC are good and length are
				>1518Byte.

6.2.3.33. Extended Register 40A9h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_err	RO	16'b0	pkg_ib_err is the number of RX packages from wire whose CRC are wrong and length are >=64Byte, <=1518Byte.

6.2.3.34. Extended Register 40AAh: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_os_bad	RO	16'b0	pkg_ib_os_bad is the number of RX packages from wire whose
			8	CRC are wrong and length are >=1518Byte.

6.2.3.35. Extended Register 40ABh: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_frag	RO	16'b0	pkg_ib_frag is the number of RX packages from wire whose length are <64Byte.
				are (04byte.

6.2.3.36. Extended Register 40ACh: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ib_nosfd	RO	16'b0	pkg_ib_nosfd is the number of RX packages from wire whose SFD is missed.

6.2.3.37. Extended Register 40ADh: pkg_selftest status

Bit	Symbol	Access	default	Description

15	5:0	Pkg_ob_valid_high	RO	16'b0	Pkg_ob_valid[31:16], pkg_ob_valid is the number of TX
					packages from MII whose CRC are good and length are
					>=64Byte and <=1518Byte.

6.2.3.38. Extended Register 40AEh: pkg_selftest status

Bit	Symbol	Access	default	Description	
15:0	Pkg_ob_valid_low	RO	16'b0	Pkg_ob_valid[15:0], pkg_ob_valid is the number of TX	
				packages from MII whose CRC are good and length are	
				>=64Byte and <=1518Byte.	

6.2.3.39. Extended Register 40AFh: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_os_good_high	RO	16'b0	Pkg_ob_os_good[31:0], pkg_ob_os_good is the number of TX packages from MII whose CRC are good and length are >1518Byte.

6.2.3.40. Extended Register 40B0h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_os_good_low	RO	16'b0	Pkg_ob_os_good[15:0], pkg_ob_os_good is the number of TX packages from MII whose CRC are good and length are >1518Byte.

6.2.3.41. Extended Register 40B1h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_us_good_high	RO	16'b0	Pkg_ob_us_good[31:0], pkg_ob_us_good is the number of TX packages from MII whose CRC are good and length are
				<64Byte.

6.2.3.42. Extended Register 40B2h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_us_good_low	RO	16'b0	Pkg_ob_us_good[15:0], pkg_ob_us_good is the number of
				TX packages from MII whose CRC are good and length are
				>1518Byte.

6.2.3.43. Extended Register 40B3h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_err	RO	16'b0	pkg_ob_err is the number of TX packages from MII whose CRC are
				wrong and length are >=64Byte, <=1518Byte.

6.2.3.44. Extended Register 40B4h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_os_bad	RO	16'b0	pkg_ob_os_bad is the number of TX packages from MII whose
				CRC are wrong and length are >=1518Byte.

6.2.3.45. Extended Register 40B5h: pkg_selftest status

Bit	Symbol	Access	default	Description
15:0	Pkg_ob_frag	RO	16'b0	pkg_ob_frag is the number of TX packages from MII whose length
				are <64Byte.

6.2.3.46. Extended Register 40B6h: pkg_selftest status

15:0 Pkg_ob_nosfd RO 16'b0 pkg_ob_nosfd is the num	mber of TX packages from MII whose SFD
is missed.	

6.2.3.47. Extended Register 40B7h: pkg_selftest control

Bit	Symbol	Access	default	Description
15:1	Reserved	RO	15'b0	
0	Pkgen_en_az	RW	1'b0	To send AZ LPI pattern during IPG.

6.2.3.48. Extended Register 40B8h: pkg_selftest control

Bit	Symbol	Access	default	Description
15:11	Reserved	RW	5'b0	No use.
10:0	Pkgen_pre_az_t	RW	11'b0	Control the IDLE time after traffic and before sending
				LPI_IDLE, in unit us.
				For Giga mode, only Pkgen_pre_az_t[8:0] is valid.

6.2.3.49. Extended Register 40B9h: pkg_selftest control

Bit	Symbol	Access	default	Description

15:11	Reserved	RW	5'b0	No use.
10:0	Pkgen_in_az_t	RW	11'b0	Control the time sending LPI_IDLE, in unit us.
				For Giga mode, only Pkgen_in_az_t[8:0] is valid.

6.2.3.50. Extended Register 40BAh: pkg_selftest control

Bit	Symbol	Access	default	Description
15:11	Reserved	RW	5'b0	No use.
10:0	Pkgen_aft_az_t	RW	11'b0	Control the IDLE time from end of LPI_IDLE to the beginning of
				next package.
				For Giga mode, only Pkgen_in_az_t[8:0] is valid.

6.2.3.51. Extended Register 40C0h: LED control

Bit	Symbol	Access	default	Description
Dit	Symbol	Access	deraun	Description
15	Led_force_en	RW	1'b0	To enable LED force mode.
14:13	Led_force_mode	RW	2'b0	Valid when bit15 led_force_en is set.
			A	00 = force LED OFF;
				01 = force LED ON;
			A	10 = force LED to blink at Blink Mode1;
		X		11 = force LED to blink at Blink Mode2.
				There are 4 Blink Mode, which are different at blink frequency.
12	Led_act_blk_ind	RW	1'b1	When traffic is present, make LED BLINK no matter the
				previous LED status is ON or OFF, or make LED blink only
				when the previous LED is ON.
				when any *_blk_en in bit9~8 and bit3~1 is set and chip do
				work at corresponding status,
				1 = LED will blink, no matter bit11~10 (duplex control) and
				bit5~4 (speed control) are 1 or 0;
				0 = LED will not blink, unless one (more) of bit11~10 (duplex
				control) and bit5~4 (speed control) is (are) 1 and related status
				is (are) matched (ON at certain speed or duplex mode is/are
				activated);.
		1		

11	Led_fdx_on_en	RW	1'b0	If BLINK status is not activated, when PHY link up at FE and duplex mode is full duplex, 1 = make LED ON; 0 = don't make LED ON;
10	Led_hdx_on_en	RW	1'b0	If BLINK status is not activated, when PHY link up at FE and duplex mode is half duplex, 1 = make LED ON; 0 = don't make LED ON;
9	Led_txact_blk_en	RW	1'b1	If bit12 Led_act_blk_ind is 1, or it is 0 and LED ON at certain speed or duplex more is/are activated, when PHY link up at either AE or FE and TX is active, 1 = make LED BLINK at Blink mode 0 or 1 based on traffic weight; 0 = don't make LED BLINK.
8	Led_rxact_blk_en	RW	1'b1	If bit12 Led_act_blk_ind is 1, or it is 0 and LED ON at certain speed or duplex more is/are activated, when PHY link up at either AE or FE and RX is active, 1 = make LED BLINK at Blink mode 0 or 1 based on traffic weight; 0 = don't make LED BLINK.
7	Led_txact_on_en	RW	1'b0	1 = if BLINK status is not activated, when PHY link up at either AE or FE and TX is active, make LED ON at least 10ms;
6	Led_rxact_on_en	RW	1'b0	1 = if BLINK status is not activated, when PHY link up at either AE or FE and RX is active, make LED ON at least 10ms;
5	Led_ht_on_en	RW	1'b0	1 = if BLINK status is not activated, when PHY link up at AE or FE and speed mode is 100Mbps, make LED ON;
4	Led_bt_on_en	RW	1'b0	1 = if BLINK status is not activated, when PHY link up at AE or FE and speed mode is 10Mbps, make LED ON;
3	Led_col_blk_en	RW	1'b0	1 = if PHY link up at FE and collision happen, make LED BLINK at Blink mode 0 or 1 based on 40C1h bit6 col_blk_sel;

V	V		V
		电 omr	

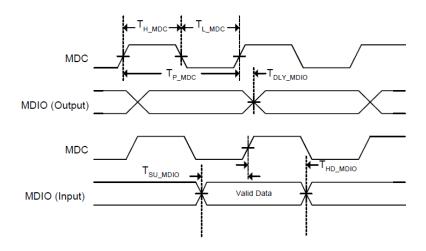
2	Led_ht_blk_en	RW	1'b1	1 = if PHY link up at AE or FE and speed mode is 100Mbps,
				make LED BLINK at Blink mode 2;
1	Led_bt_blk_en	RW	1'b1	1 = if PHY link up at AE or FE and speed mode is 10Mbps,
				make LED BLINK at Blink mode 3;
0	Dis_led_an_try	RW	1'b0	when FE is active and FE auto-negotiation is at
				LINK_GOOD_CHECK status,
				1 = LED will be on;
				0 = LED will be off.

6.2.3.52. Extended Register 40C1h: LED control

		1	1	
Bit	Symbol	Access	default	Description
15:10	Reserved	RO	6'b0	Always 0.
9	Invert_led_duty	RW	1'b0	1 = to invert the duty cycle of ON and OFF, namely make LED
				ON time short and OFF time long.
8	Lpbk_led_dis	RW	1'b0	1 = In internal loopback mode, LED will not blink;
				0 = In internal loopback mode, LED will still blink if it's
				configured to blink on activity.
7	Jabber_led_d7s	RW	1'b0	1 = when 10Mbps Jabber happens, LED will not blink;
				0 = when 10Mbps Jabber happens, LED will still blink if it's
				configured to blink on TX.
6	Col_blk_sel	RW	1'b0	1 = when collision happens, LED blink at Blink Mode2 with
				higher frequency;
				0 = when collision happens, LED blink at Blink Mode1 with
				lower frequency;
5	En_led_act_level	RW	1'b0	1 = to make LED blink at different frequency (Blink mode 0)
				when traffic weight is high.
				0 = to make LED blink always at Blink mode 1 no matter what
				the traffic weight is.
4:0	Led_act_level_th	RW	5'd12	Traffic is heavy or not's threshold.
				RX/TX traffic is monitored separately. In 1s interval, if RX or
				TX traffic active time > Led_act_level_th*42ms, then the traffic
				is heavy; otherwise, traffic is not heavy.
		l	[

6.2.3.53. Extended Register 40C2h: LED control

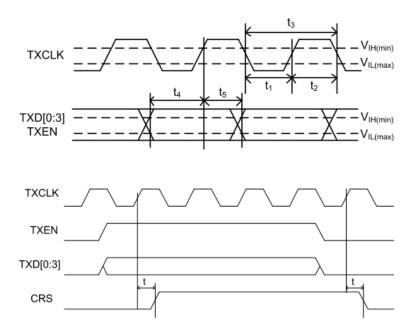
	Symbol	Access	default	Description
15:12	Freq_sel_c0	RW	4'd14	Control the LED blink frequency in Blink mode 0.
				ON/OFF duty cycle could be reverted by 40C1h bit9
				invert_led_duty. Below description is the default ON/OFF cycle, that
				is invert_led_duty=0.
				4'd0=LED blink once every 10s, 6% OFF;
				4'd1=LED blink once every 9.4s, 7% OFF;
				4'd2=LED blink once every 8s, 8% OFF;
				4'd3=LED blink once every 7.4s, 9% OFF;
				4'd4=LED blink once every 6s, 11% OFF;
				4'd5=LED blink once every 5s, 6% OFF;
				4'd6=LED blink once every 4s, 8% OFF;
				4'd7=LED blink once every 3s, 11% OFF;
				4'd8=LED blink once every 2s, 16% OFF;
				4'd9=LED blink once every 1s, 16% OFF;
				4'd10=LED blink at 2Hz, 50% OFF;
				4'd11=LED blink at 3Hz, 50% OFF;
				4'd12=LED blink at 4Hz, 50% OFF;
				4'd13=LED blink at 6Hz, 50% OFF;
				4'd14=LED blink at 8Hz, 50% OFF;
				4'd15=LED blink at 10Hz, 50% OFF;
11:8	Freq_sel_c1	RW	4'd12	Control the LED blink frequency in Blink mode 1.
				See description in bit15~12 Freq_sel_c0 for detail.
7:4	Freq_sel_c2	RW	4'd7	Control the LED blink frequency in Blink mode 2.
				See description in bit15~12 Freq_sel_c0 for detail.
3:0	Freq_sel_c3	RW	4'd5	Control the LED blink frequency in Blink mode 3. See description in
				bit15~12 Freq_sel_c0 for detail.


7. Timing and AC/DC characteristics

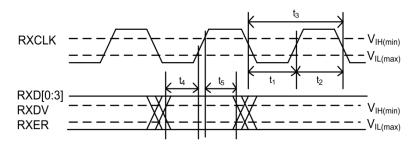
7.1. DC Characteristics

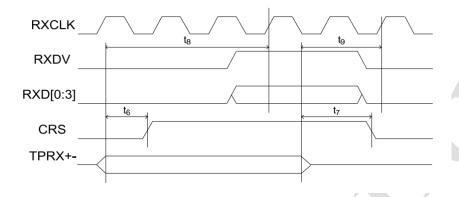
Symbol	Description	Min	Тур	Max	Unit
VDD33	3.3V power supply	2.97	3.3	3.63	V
OVDD	2.5/3.3V power supply	2.25/2.97	2.5/3.3	2.75/3.63	V
DVDDL	1.2V power supply	1.08	1.2	1.32	V
AVDDL	1.2V power supply	1.08	1.2	1.32	V
Voh 3.3V	Minimum High Level Voltage Output Voltage	2.4	-	3.6	V
Vol 3.3V	Minimum Low Level Voltage Output Voltage	-0.3	-	0.4	V
Vih 3.3V	Maximum High Level Input Voltage	2	- 6	<i>/ / / / / / / / / /</i>	V
Vil 3.3V	Maximum Low Level Input Voltage	-		0.8	V

7.2. AC Characteristics


7.2.1. MDC/MDIO Timing

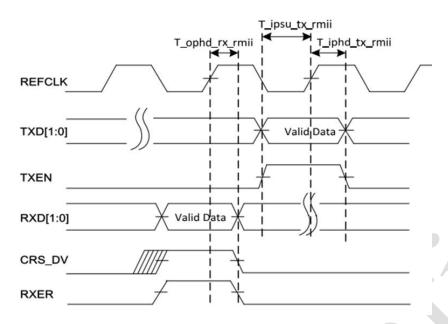
	7				
Symbol	Description	Min	Тур	Max	Unit
T DLY_MDIO	MDC to MDIO Output Delay Time			20	ns
T SU_MDIO	MDIO Input to MDC Setup Time	10			ns
T HD_MDIO	MDIO Input to MDC Hold Time	10			ns
T P_MDC	MDC Period	80			ns
T H_MDC	MDC High	30			ns
T L_MDC	MDC Low	30			ns
Maximum Frequency =	= 12.5M Hz	•	•	•	


7.2.2. MII Transmission Cycle Timing

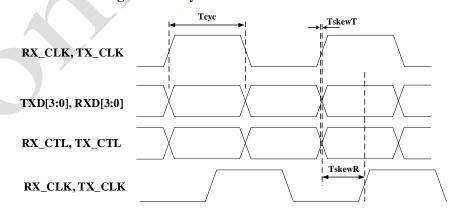


Symbol	Description		Minimum	Typical	Maximum	Unit
t1	TXCLK High Pulse Width	100Mbps	14	20	26	ns
t1	TXCLK High Pulse Width	10Mbps	140	200	260	ns
t2	TXCLK Low Pulse Width	100Mbps	14	20	26	ns
t2	TXCLK Low Pulse Width	10Mbps	140	200	260	ns
t3	TXCLK Period	100Mbps	-	40	-	ns
t3	TXCLK Period	10Mbps	-	400	-	ns
t4	TXEN, TXD[0:3]	100Mbps	10	-	-	ns
t4	TXEN, TXD[0:3]	10Mbps	5	-	-	ns
t5	TXEN, TXD[0:3]	100Mbps	0	-	-	ns
t5	TXEN, TXD[0:3]	10Mbps	0	-	-	ns
t6	TXEN Sampled to CRS High	100Mbps	-	-	40	ns
t6	TXEN Sampled to CRS High	10Mbps	-	-	400	ns
t7	TXEN Sampled to CRS Low	100Mbps	-	-	160	ns
t7	TXEN Sampled to CRS Low	10Mbps	-	-	2000	ns

7.2.3. MII Reception Cycle Timing



Symbol	Description	71	Minimum	Typical	Maximum	Unit
t1	RXCLK High Pulse Width	100Mbps	14	20	26	ns
t1	RXCLK High Pulse Width	10Mbps	140	200	260	ns
t2	RXCLK Low Pulse Width	100Mbps	14	20	26	ns
t2	RXCLK Low Pulse Width	10Mbps	140	200	260	ns
t3	RXCLK Period	100Mbps	-	40	-	ns
t3	RXCLK Period	10Mbps	-	400	-	ns
t4	RXER, RX_DV,RXD[0:3] Setup to RXCLK Rising Edge	100Mbps	10	-	-	ns
t4	RXER, RX_DV, RXD[0:3] Setup to RXCLK Rising Edge	10Mbps	10	-	-	ns
t5	RXER, RX_DV, RXD[0:3] Hold After RXCLK Rising Edge	100Mbps	10	-	-	ns
t5	RXER, RX_DV, RXD[0:3] Hold After RXCLK Rising Edge	10Mbps	10	-	-	ns
t6	Receive Frame to CRS High	100Mbps	-	-	130	ns
t6	Receive Frame to CRS High	10Mbps	-	-	2000	ns
t7	End of Receive Frame to CRS Low	100Mbps	-	-	240	ns
t7	End of Receive Frame to CRS Low	10Mbps	-	-	1000	ns
t8	Receive Frame to Sampled Edge of RX_DV	100Mbps	-	-	150	ns
t8	Receive Frame to Sampled Edge of RX_DV	10Mbps	-	-	3200	ns
t9	End of Receive Frame to Sampled Edge of RX_DV	100Mbps	-	-	120	ns
t9	End of Receive Frame to Sampled Edge of RX_DV	10Mbps	-	1	1000	ns



7.2.4. RMII Transmission and Reception Cycle Timing

Symbol	Description	Minimum	Typical	Maximum	Unit
REFCLK Frequency	Frequency of Reference Clock	_	50	-	MHz
REFCLK Duty Cycle	Duty Cycle of Reference Clock	35	_	65	%
T_ipsu_tx_rmii	TXD[1:0]/TXEN Setup Time to REFCLK	4	_	-	ns
T_iphd_tx_rmii	TXD[1:0]/TXEN Hold Time from REFCLK	2	_	-	ns
T_ophd_rx_rmii	RXD[1:0]/CRS_DV/RXER Output Delay Time from REFCLK	2	-	-	ns

7.2.5. RGMII Timing w/o delay

Symbol	Parameter	Min	Тур	Max	Unit
TskewT	Data to clock output skew (at Transmitter)	-500	0	500	ps
TskewR	Data to clock output skew (at Receiver)	1		_	ns

					Motor Comm
Teye	Clock cycle duration	7.2	8.0	8.8	ns
Duty_G	Duty cycle for Gigabit	45	50	55	%
Duty_T	Duty cycle for 10/100T	40	50	60	%
Tr/Tf	Rise/Fall time (20 - 80%)	_	_	0.75	ns

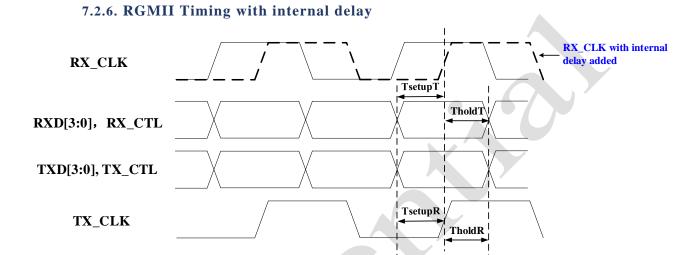


Figure 1. RGMII Timing with internal delay

Table 1. RGMII Timing with internal delay

Symbol	Parameter	Min	Тур	Max	Unit
TsetupT	Data to Clock output Setup (at Transmitter — integrated delay)	1.0	2.0	-	ns
TholdT	Clock to Data output Hold (at Transmitter — integrated delay)	1.0	2.0	-	ns
TsetupR	Data to Clock input setup Setup (at Receiver — integrated delay)	1.0	2.0	-	ns
TholdR	Data to Clock output setup Setup (at Reciever — integrated delay)	1.0	2.0	-	ns

7.3. Crystal Requirement

Symbol	Description	Min	Тур	Max	Unit
Fref	Crystal Reference Frequency	-	25	-	MHz
F ref Tolerance	Crystal Reference Frequency tolerance	-50	-	50	ppm
Duty Cycle	Reference clock input duty cycle	40	-	60	%
ESR	Equivalent Series Resistance	-		50	ohm
DL	Drive Level	-	-	0.5	mW
Vih	Crystal output high level	1.4	-	-	V
Vil	Crystal output low level	-	-	0.4	V

7.4. Oscillator/External Clock Requirement

Parameter	Condition	Min	Тур	Max	Unit
Frequency			25		MHz
Frequency tolerance	Ta= -40~85 C	-50		50	PPM
Duty Cycle		40	-	60	%
Peak to Peak Jitter				200	ps
Vih		1.4		AVDD33+0.3	V
Vil				0.4	V
Rise Time	10%~90%			10	ns
Fall Time	10%~90%			10	ns
Temperature Range	YT8510C	0		70	°C
Temperature Range	YT8510H	-40		85	°C

8. Power Requirements

8.1. Absolute Maximum Ratings

Symbol	Description	Min	Max	Unit
DVDD33	3.3 V power supply	-0.3	3.70	V
AVDD33	3.3 V power supply	-0.3	3.70	V
AVDDL	1.2 V power supply	-0.2	1.50	V
DVDDL	1.2 V power supply	-0.2	1.50	V

8.2. Recommended Operating Condition

Description	Pins	Min	Тур	Max	Unit
Power supply	VDD33	2.97	3.30	3.63	V
	OVDD	2.25/2.97	2.5/3.30	2.75/3.63	V
	AVDDL	1.08	1.20	1.32	V
	DVDDL	1.08	1.20	1.32	V
YT8510C Ambient Operation Tem	perature Ta	0	-	70	°C
YT8510H Ambient Operation Tem	-40	-	85		
Maximum Junction Temperature			125	°C	

8.3. Power On Sequence

Figure 2. Power Sequence Diagram

Symbol	Description	Min	Тур	Max	Units
T1	3.3V rising time	0.5	-	-	ms
T2	3.3V and 1.2V power down duration	100	-	-	ms
Т3	Core power 1.2V ready time	72	-	-	ms

T4	Internal LDO ready time	1.5	-	-	ms

When using crystal, the clock is generated internally after power is stable. For a reliable power on reset, suggest to keep asserting the reset low long enough (100ms) to ensure the clock is stable and clock-to-reset 10ms requirement is satisfied.

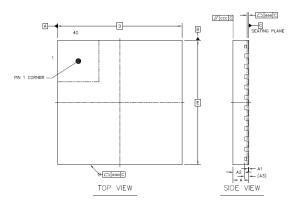
8.4. Maximum Power Consumption

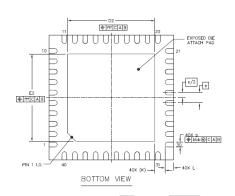
Condition		VDD33_MAIN	VDD33(DAC/AUX/OVDD)	A/DVDDL	3.3V Total
Traffic	100Mbps	105mA	40mA	65mA	110mA

Note: The Maximum power consumption is measured under high temperature(TA=85°C) with FF corner process (fast nmos and fast pmos)DUT.

9. Mechanical and Thermal

9.1. RoHS-Compliant Packaging


Motor-comm offers an RoHS package that is compliant with RoHS


9.2. Thermal Resistance

Symbol	Parameter	Conditon	Туре	Units
θЈА	Thermal resistance - junction to ambient $\theta JA = (TJ - TA)/P$	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow TA=25°C	30	°C/W
	P = Total power dissipation	JEDEC 3 in. x 4.5 in. 4-layer PCB with no air flow TA=125°C	26	°C/W
θЈС	Thermal resistance - junction to case $\theta JC = (TJ - TC)/Ptop$ Ptop = Power dissipation from the top of the package	JEDEC with no air flow	16.8	°C/W
θЈВ	Thermal resistance - junction to board $\theta JB = (TJ - TB)/Pbottom$ Pbottom = Power dissipation from the bottom of the package to the PCB surface.	JEDEC with no air flow	10.4	°C/W

10. Mechanical Information

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	Α	0.7	0.75	0.8	
STAND OFF	A1	0	0.02	0.05	
MOLD THICKNESS	A2		0.55		
L/F THICKNESS	A3	0.203 REF			
LEAD WIDTH	ь	0.18 0.23 0.28			
BODY SIZE	X	D	6 BSC		
BODT SIZE	Υ	E	6 BSC		
LEAD PITCH		е	0.5 BSC		
EP SIZE	Х	D2	4.1	4.2	4.3
EF SIZE	Υ	E2	4.1	4.2	4.3
LEAD LENGTH	L	0.3	0.4	0.5	
LEAD TIP TO EXPOSED	K	0.5 REF			
PACKAGE EDGE TOLERA	aga	0.1			
MOLD FLATNESS	ccc	0.1			
COPLANARITY	eee	0.08			
LEAD OFFSET	bbb	0.1			
EXPOSED PAD OFFSET	fff	0.1			
		-			

11. Ordering Information

Part Number	Grade	Package	Pack	Status	Operation temp (°C)
YT8510C	Consumer	QFN40 6x6	3000ea Tape&Reel	Mass Production	0 to 70 ℃
YT8510H	Industrial	QFN40 6x6	3000ea Tape&Reel	Mass Production	-40 to 85 ℃

