

Features

• Single-Supply Operation from +1.4V ~ +5.5V

• Rail-to-Rail Input / Output

Gain-Bandwidth Product: 14.5KHz (Typ)

• Low Input Bias Current: 1pA (Typ)

Low Offset Voltage: 3mV (Max)

• Quiescent Current: 600nA per Amplifier (Typ)

Operating Temperature: -40°C ~ +125°C

• Embedded RF Anti-EMI Filter

Applications

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- Smoke Detectors

- Audio Output
- Piezoelectric Transducer Amplifier
- Medical Instrumentation
- Portable Systems

Pin Configuration

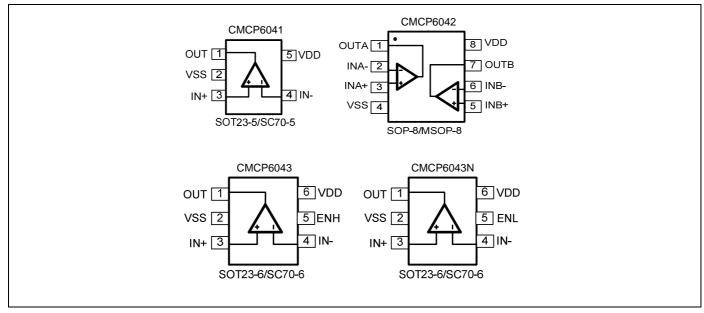


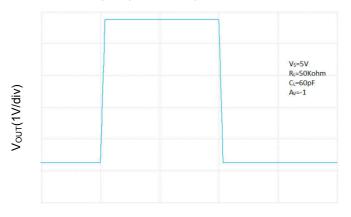
Figure 1. Pin Assignment Diagram

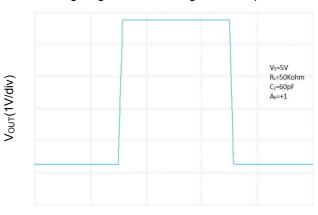
Absolute Maximum Ratings

Condition	Min	Мах		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+160)°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+260)°C		
Package Thermal Resistance (T _A =+25℃)				
SOP-8, θ _{JA}	125°C	125°C/W		
MSOP-8, θ _{JA}	216°0	216°C/W		
SOT23-5, θ _{JA}	190°C	C/W		
SOT23-6, θ _{JA}	190°0	C/W		
SC70-5, θ _{JA}	333°C	C/W		
SC70-6, θ _{JA}	333°C	333°C/W		
ESD Susceptibility				
НВМ	6K	6KV		
MM	300	300V		

Electrical Characteristics

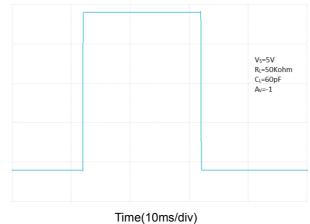
(At Vs = +5V, RL = 1M Ω connected to Vs/2, and VouT = Vs/2, unless otherwise noted.)


DADAMETER	e)/MPGI	CONDITIONS	СМС	CMCP6041/6042/6043			
PARAMETER	SYMBOL	CONDITIONS	TYP	MIN	MAX	UNITS	
INPUT CHARACTERISTICS			•		•		
Input Offset Voltage	Vos	$V_{CM} = V_S/2$	0.4		3	mV	
Input Bias Current	I _B		1			pА	
Input Offset Current	Ios		1			pА	
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +5.6			V	
Common Mada Daigation Datio	CMDD	$V_S = 5V$, $V_{CM} = -0.1V$ to 2.5V	78	66		dB dB μV/°C	
Common-Mode Rejection Ratio	CMRR	V _S = 5V, V _{CM} = -0.1V to 5.1V	84	67			
Ones Lees Valley Osia		$Vs=1.4V, R_L = 50k\Omega, V_O = Vs-0.1V$	86	75			
Open-Loop Voltage Gain	A _{OL}	Vs=5V, R_L = 50k Ω , V_O = Vs-0.1V	93	84		aB	
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$		2.5			μV/°C	
OUTPUT CHARACTERISTICS			•		•		
	V _{OH}	V 44V B 5010	1.395	1.390		V	
	V _{OL}	Vs=1.4V, $R_L = 50k\Omega$	4.5		10	mV	
Output Voltage Swing from Rail	V _{OH}	V 5V D 5010	4.997	4.990		V 10 mV V	
	V _{OL}	Vs=5V, R _L = 50kΩ	3.5		10	mV	
0.1.10	I _{SOURCE}	D 400 L V 40	20				
Output Current	I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	20			mA	
POWER SUPPLY			•		•		
On antina Waltana Banan			1.4			V	
Operating Voltage Range			5.5			pA V dB dB μV/°C V mV v mV	
Power Supply Rejection Ratio	PSRR	$V_S = +1.4V \text{ to } +5.5V, V_{CM} = +0.5V$	80	77		dB	
Quiescent Current / Amplifier	IQ		600			nA	
Shutdown Current / Amplifier	I _{Q_off}	CMCP6043 CMCP6043N	54			nA	
DYNAMIC PERFORMANCE (CL	= 100pF)			•	•	•	
Gain-Bandwidth Product	GBP		14.5			KHz	
Slew Rate	SR	G = +1, 2V Output Step	6			V/ms	
	•	•	•		•		

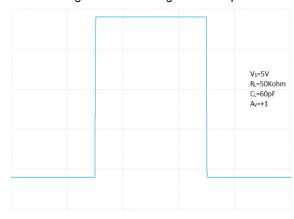

Typical Performance characteristics

At T_A =+25°C, V_S =+5V, and R_L =100K Ω connected to $V_S/2$, unless otherwise noted.

Large Signal Inverting Pulse Response

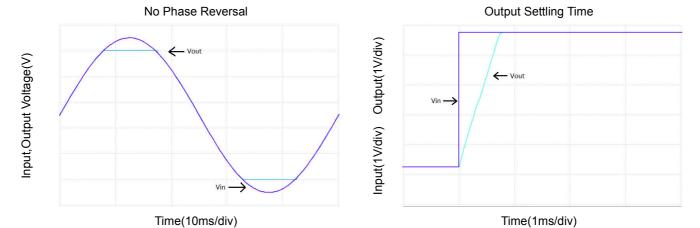

Large Signal Non-Inverting Pulse Response

Time(10ms/div)


Time(10ms/div)

Vour(25mV/div)

Small Signal Non-Inverting Pulse Response


Time(10ms/div)

V_{OUT}(25mV/div)

Typical Performance characteristics

At T_A=+25°C, V_S=+5V, and R_L=100K Ω connected to V_S/2, unless otherwise noted.

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

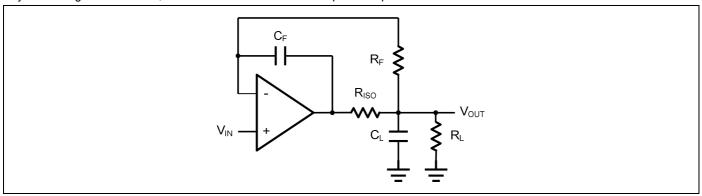


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using CMCP604X family

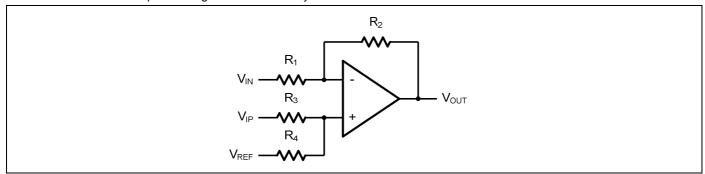


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

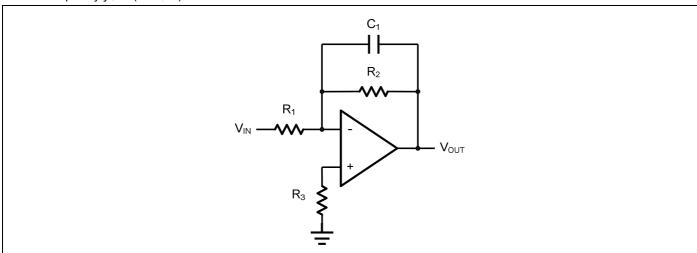
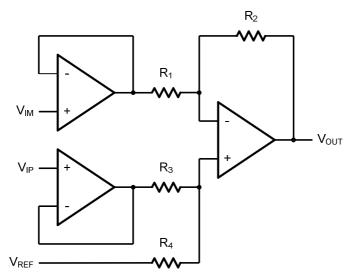
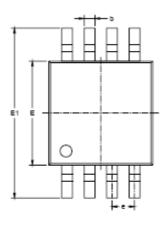


Figure 5. Low Pass Active Filter

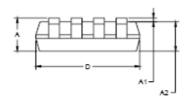
Instrumentation Amplifier

The triple CP604X family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.



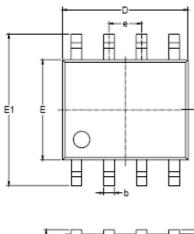

Figure 6. Instrument Amplifier

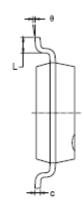
www.tokmas.com

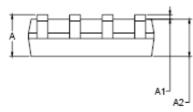


Package Information

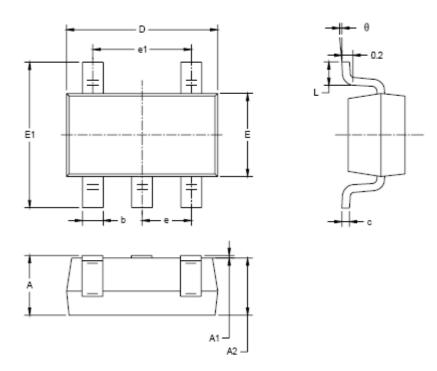
MSOP-8



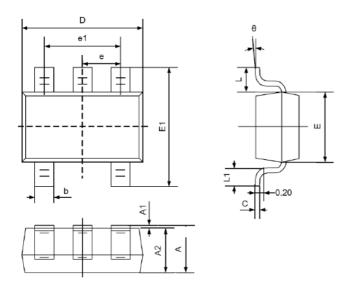



Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
A	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.008
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
e	0.650 BSC		0.026	BSC
L	0.400	0.800	0.016	0.031
0	0°	6°	0°	6°

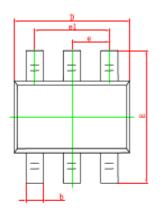
SOP-8

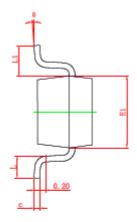


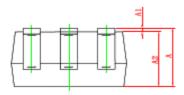
Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	1.27 BSC 0.050 BSC		BSC	
L	0.400	1.270	0.016	0.050
е	0°	8°	0°	8°


SOT23-5

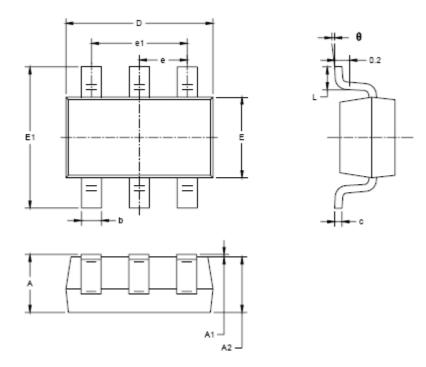
Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	0.950 BSC		BSC
e1	1.900	1.900 BSC		BSC
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°


SC70-5




	Dimensions		Dimensions	
Symbol	In Millimeters		In Inches	
	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650T	ΥP	0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021R	EF
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

SC70-6



Cumbal	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	2.000	2.200	0.079	0.087
E	2.150	2.450	0.085	0.096
E1	1.150	1.350	0.045	0.053
е	0.650	TYP.	0.026	TYP.
e1	1.200	1.400	0.047	0.055
L	0.260	0.460	0.010	0.018
L1	0.525	0.525 REF.		REF.
θ	0°	8°	0°	8°

SOT23-6

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.087
E1	2.650	2.950	0.104	0.116
e	0.950	0.950 BSC		BSC
e1	1.900 BSC 0.075 BSC		BSC	
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°