

Ultra-low Cost High Performance 2.4 GHz GFSK Transceiver

Key Features

■ Worldwide 2.4GHz ISM band operation

■ Modulation: GFSK/FSK

■ Air data rate: 2Mbps/1Mbps/250Kbps

■ BLE4.2 PHY&MAC compatibility

■ Ultra low shutdown current: 2uA

■ Ultra low standby current: 20uA

■ Max 160us start-up from standby mode

■ Internal integrated high PSRR LDO

■ Supply range: 2.1-3.6V

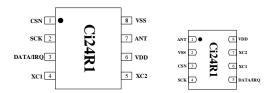
■ Digital I/O voltage range: 1.9-3.6V

■ Receiving sensitivity: -80dBm @2Mbps

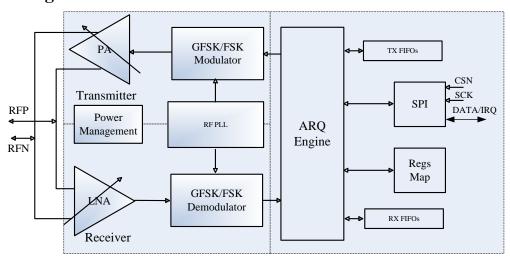
■ Maximum transmission power: 9dBm

■ RX supply current (2Mbps): 20mA

■ Maximum rate 10MHz,2-wire interface SPI


■ Embedded ARQ baseband protocol engine

- TX/RX Hardware interrupt output
- Support 1bit RSSI output
- Minimal peripheral devices, reducing system application costs
- SOP-8 package or DFN-8 package


Applications

- ♦ Wireless mouse and keyboards
- ◆ Remote control、Somatosensory device
- ♦ Smart Grid and Home automation
- ♦ Wireless audio
- Wireless data transceiver module

Pin Assignments

Block diagram

Abbreviations

Abbreviation	Description	
ARQ	Auto Repeat-reQuest	
ART	Auto ReTransmission	
ARD	Auto Retransmission Delay	
BER	Bit Error Rate	
CE	Chip Enable	
CRC	Cyclic Redundancy Check	
CSN	Chip Select	
DPL	Dynamic Payload Length	
GFSK	Gaussian Frequency Shift Keying	
IRQ	Interrupt Request	
ISM	Industrial-Scientific-Medical	
LSB	Least Significant Bit	
Mbps	Megabit per second	
MCU	Micro Controller Unit	
MHz	Mega Hertz	
MISO	Master In Slave Out	
MOSI	Master Out Slave In	
MSB	Most Significant Bit	
PA	Power Amplifier	
PID	Packet Identity	
PLD	Payload	
RX	RX	
TX	TX	
PWR_DWN	Power Down	
PWR_UP	Power UP	
RF_CH	Radio Frequency Channel	
RSSI	Received Signal Strength Indicator	
RX	Receiver	
RX_DR	Receive Data Ready	
SCK	SPI Clock	
SPI	Serial Peripheral Interface	
TX	Transmitter	
TX_DS	Transmit Data Sent	
XTAL	Crystal	

Content

1 Introduction	5
2 Pin Information	6
3 Operational modes	7
3.1 State Control Diagram	7
3.1.1 Shutdown Mode	9
3.1.2 Standby Mode	9
3.1.3 Idle-TX Mode	9
3.1.4 TX Mode	9
3.1.5 RX Mode	10
4 Packet processing protocol	11
4.1 ARQ packet format	11
4.2 ARQ Communication Mode	12
4.2.1 ACK mode	12
4.2.2 NOACK Mode	15
4.2.3 Dynamic payload length (DPL) and static payload length	15
4.2.4 Multi data pipes communication	15
4.3 Bluetooth package format	17
5 SPI Interface	19
5.1 SPI Commands	19
5.2 SPI Timing	20
6 Register Table	22
7 Electrical specification	30
7.1 Limitation parameter	30
7.2 Electrical specification	30
8 Package	32
8.1 SOP-8 package	32
8.2 DFN-8 package	33
9 Typical Application Schematic	34
9.1 SOP package	34
9.1.1 Typical Application Schematic	34
9.1.2 PCB layout	35
9.2 DFN package	36
9.2.1 Typical Application Schematic	36
9.2.2 PCB layout	37
10 Version Information	38

11 Order Information	39
12 Technical Support and Contact Information	40

1 Introduction

Ci24R1 is a single chip transceiver with an embedded ARQ baseband protocol engine, suitable for ultra-low cost wireless applications and is designed for operation in the 2.4GHz ISM frequency band at 2400MHz to 2525MHz. The operating frequency band is divided into 126 RF channels and the resolution of the RF channel frequency setting is 1MHz.

Ci24R1 uses GFSK/FSK digital modulation and demodulation. Both air data rate and PA output power are configurable. The air data rate can be programmed to 2Mbps, 1Mbps and 250Kbps. The higher data rate contributes the lower power consumption because it takes less time to transmit or receive signals.

Ci24R1, which is compatible with BLE4.2 standard PHY and MAC, can be very convenient to interact with mobile data.

Ci24R1 is easy to use, and it can realize communication only by configuring several registers through the 2-wire SPI with an MCU(microcontroller). The embedded ARQ baseband protocol engine is based on packet communication and supports various modes from manual operation to advanced autonomous ARQ protocol operation. Internal FIFOs ensure a smooth data flow between the radio front end and the system's MCU. Enhanced ARQ baseband protocol engine reduces system consumption of MCU by handling all high speed link layer operations.

Ci24R1 has very low cost of system application. To design a radio system with the Ci24R1, you simply need a microcontroller and a few external passive components. Internal integrated high PSRR LDO ensures Ci24R1 to work steadily within 2.1-3.6v wide power supply. Digital I/O is compatible with several I/O voltage standards such as 2.5V/3.3V/5V, and it can be connected directly to various MCU I/O ports. The internal integrated crystal oscillator capacity can realize the temperature compensation of the crystal oscillator capacity and the wide range of temperature.

2 Pin Information

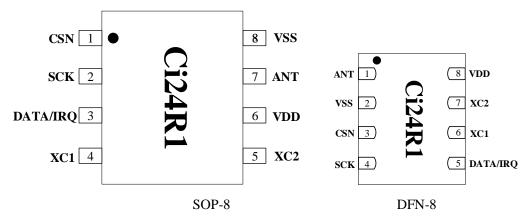


Figure 2-1 Ci24R1 pin information (QFN20 4×4 package)

Table 2.1 pin function

Pin (SOP-8)	Pin (DFN-8)	Name	Туре	Pin function
1	3	CSN	DI	SPI chip selcetion
2	4	SCK	DI	SPI Clock
3	5	DATA/IRQ	IO	SPI data input/output/ interrupt
4	6	XC1	AI	Crystal oscillator input
5	7	XC2	AO	Crystal oscillator output
6	8	VDD	Power	Power supply $(+2.1 \sim +3.6V, DC)$
7	1	ANT	RF	Antenna port
8	2	VSS	Power(0V)	Ground (0V)

3 Operational modes

3.1 State Control Diagram

The Ci24R1 has a built-in state machine that controls the transitions between the chip's different operating modes.

The state diagram in Figure 3-1 shows the operating modes and how they function. There are five operating modes: Shutdown, Standby, Idle-TX, TX and RX.

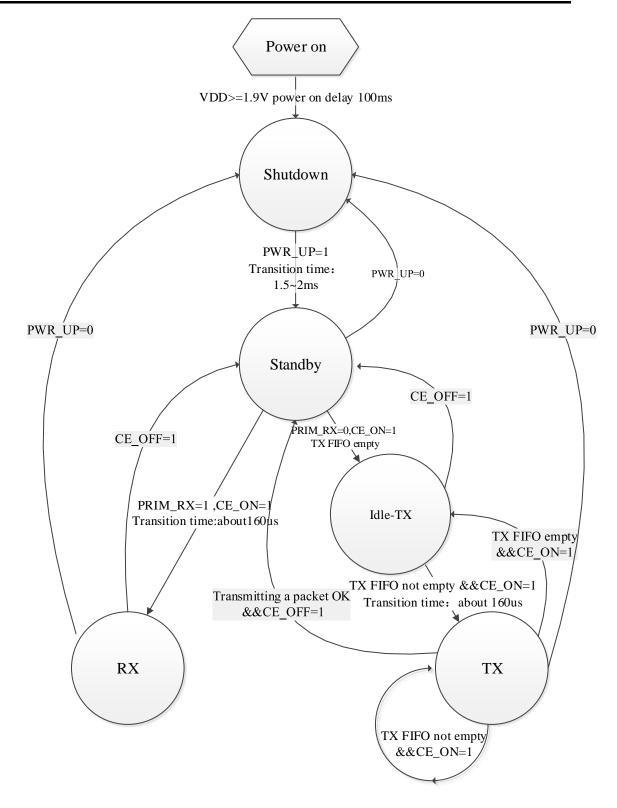


Figure 3-1 Ci24R1 state control diagram

3.1.1 Shutdown Mode

In Shutdown mode Ci24R1 is disabled using minimal current consumption, and the function of data transmitting and receiving is stopped. All register values available are maintained and can be written or read by SPI which is kept active. Shutdown mode is entered by setting the PWR_UP bit in the CONFIG register low.

3.1.2 Standby Mode

In Standby mode only part of the crystal oscillator is active. Standby mode is used to minimize average current consumption while maintaining short start-up times. Standby mode is entered after the crystal oscillator works stably by setting PWR_UP bit in the CONFIG register to 1. The crystal oscillator startup time is about 1.5~2ms, which is related to the performance of the crystal oscillator. The Ci24R1 enters Idle-TX or RX mode after writing CE_ON command. After writing CE_OFF command, Ci24R1 returns to Standby mode from Idle-TX mode, TX or RX mode.

3.1.3 Idle-TX Mode

In Idle-TX mode, the crystal oscillator and clock buffers are active and more current is used compared to Standby mode. Ci24R1 enters Idle-TX mode if write CE_ON command on a PTX device with an empty on TX FIFO. If a new packet is uploaded to the TX FIFO, the internal circuits will be active immediately, Ci24R1 enters TX mode and the packet is transmitted.

Both in Standby and Idle-TX mode all register and FIFO values are maintained and can be written or read by SPI.

3.1.4 TX Mode

The TX mode is an active mode for transmitting packets. To enter this mode, Ci24R1 must have PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the CE_STATE for more than 10us. Instead of switching directly from the Standby mode to the TX mode, Ci24R1 should switch from the Standby mode to Idle-TX mode, and then switch to TX mode. The transition time from Idle-TX mode to TX mode takes about 160us. Ci24R1 stays in TX mode until it finishes a packet transmitting. If writes CE_ON command then CE_STATE=1, the status of TX FIFO determines the next action. If the TX FIFO is not empty, the Ci24R1 remains in TX mode and transmits the next packet. If the TX

FIFO is empty, the Ci24R1 goes into Idle-TX mode. If writes CE_OFF command then CE_STATE=0, Ci24R1 returns to Standby mode immediately. The Ci24R1 generates a TX interrupt after finishing transmitting a packet.

3.1.5 RX Mode

The RX mode is an active mode where Ci24R1 is used as a receiver. To enter this mode, Ci24R1 must have PWR_UP bit, PRIM_RX bit set high and the CE_STATE=1(CE_ON command). The transition time from Standby mode to RX mode about 160us. If a valid packet is found (by a matching address and a valid CRC), the payload of the packet is presented in a vacant slot in the RX FIFOs, and generate a data reception interrupt. Ci24R1 can store 3 valid packets at most, if FIFOs are full, the received packet is discarded.

In RX mode the power of received signal is available by RSSI register. When a RF signal higher than -50dBm is detected inside the receiving frequency channel, the RSSI bit of RSSI register will be set high, otherwise RSSI bit set low. There are two methods for updating RSSI register. When a valid packet is received, then RSSI will be updated automatically. In addition, when chip enters Standby mode from RX mode, RSSI also will be updated. The value of RSSI varies with temperature, within ±5dbm.

4 Packet processing protocol

Ci24R1 is based on packet communication and supports stop-and-wait ARQ protocol, compatible with BLE4.2 standard PHY and MAC. Internal ARQ baseband protocol engine can realize automatic ACK and NO_ACK packet handling without the involvement of MCU. ARQ baseband supports the handling of 1 to 32 bytes dynamic payload length which is inside the packet. Besides, it supports static payload length which is set by registers. Baseband handling features automatic packet disassembly and assembly, automatic acknowledgement and retransmissions of packet. It also has 6 data pipes for 1:6 star networks.

4.1 ARQ packet format

A whole packet contains a preamble, address, packet control, payload and CRC field. Figure4-1 shows the packet format with MSB to the left.

Preamble Address	Packet control	Payload	CRC
------------------	----------------	---------	-----

Figure 4-1 A whole ARQ packet

The preamble is used to synchronize the receivers demodulator to the incoming bit stream. It is automatically attached when transmitting and added by transmitter and discarded by receiver, and shielded for users.

The address field stores the packet address values for the receiver. A packet will be received only when the address of the packet matches the address of the receiver. The address field width in the AW register can be configured to be 3, 4 or 5 bytes.

Figure 4-2 shows the format of the 9 bit packet control field.

Payload length 6bit	PID 2bit	NO_ACK 1bit
---------------------	----------	-------------

Figure 4-2 Format of packet control field

The 6 bit payload length specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes.

For example: 000000 = 0 byte (no payload)

100000 = 32 byte (32 bytes of payload)

The PID field is used to detect if the received packet is new or retransmitted. PID

prevents the PRX device from presenting the same payload more than once. The PID field is incremented at the TX side for each new packet received and write FIFO through the SPI. The PID and CRC fields are used by the PRX device to determine if a packet is retransmitted or new. If a packet has the same PID as the previous packet, Ci24R1 compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded.

When NO_ACK bit is 1, it indicates telling the receiver that the packet is not to be auto acknowledged. For the transmitter, to set NO_ACK bit high must first be enabled in the FEATURE register by setting the EN_DYN_ACK bit, and set the NO_ACK flag bit in the packet control field with this command: W_TX_PAYLOAD_NOACK. The PRX does not transmit an ACK packet when it receives this packet, even if it is working in ACK mode.

The payload is the user defined content of the transmitted packet. It can be up to 32 bytes.

The CRC field is the mandatory error detection mechanism in the packet. It is either 1 or 2 bytes, and the number of bytes is set by the CRCO bit in the CONFIG register.

4.2 ARQ Communication Mode

In the TX mode the PTX device assembles the preamble, address, packet control field, payload and CRC to make a complete packet first and then transmits the packet with RF module.

In the RX mode the receiver constantly searches for a valid packet by a matching address and a valid CRC. After the packet is validated, the receiver disassembles the packet and loads the payload into the RX FIFO and generates interrupt to assert the MCU. MCU can read data in the RX FIFO register through SPI at any time.

4.2.1 ACK mode

When write the data to the TX FITO using the W_TX_PAYLOAD command, the NO_ACK flag bit in the packet control field is reset after the data is packaged. After receiving a frame of valid data, the PRX asserts RX_DR interrupt and automatically send a frame of ACK signal. When receiving the ACK signal, the PTX automatically clears the TX FIFO and generates TX_DS transmission interrupt, then the communication is successful.

To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet. On the PTX the TX_ADDR must be the same as the

RX_ADDR_P0 and as the pipe address for the designated pipe.

If the PTX does not receive the ACK signal within ARD time, it will retransmit the last frame data. If the number of retransmissions exceeds the programmed maximum limit(ARC) and still not receive an ACK packet, the PTX will generate MAX_RT interrupt. No further packets can be transmitted before MAX_RT interrupt is cleared. All interrupts are cleared by writing to the STATUS register. The PLOS_CNT register is incremented at each MAX_RT interrupt, and is used to count the total number of transmissions since the last channel change. The ARC_CNT register counts the number of retransmissions for the current transaction, and can be reset by initiating a new transaction. The number of times it is allowed to retransmit and Auto Retransmit Delay can be set by the ARC bit and ARD bit in the SETUP_RETR register. The Auto Acknowledgement feature is enabled by setting the EN_AA register.

Figure 4-3 shows a complete communication in ACK mode.

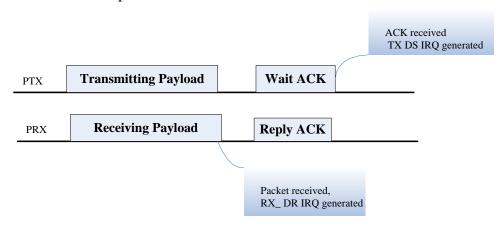


Figure 4-3 ACK mode

The PID field is incremented at the TX side for each new packet received, so the PIDs in the two adjacent data packets sent should be different from each other. If several data packets are lost on the link, the PID fields may become equal to the last received PID.

If the PRX detects a packet has the same PID as the previous packet, then compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded, and the ACK signal is replied again. Figure 4-4 shows the PTX device did not receive the ACK signal for the first data transmission. The ACK signal was received after retransmission, and the data communication was completed.

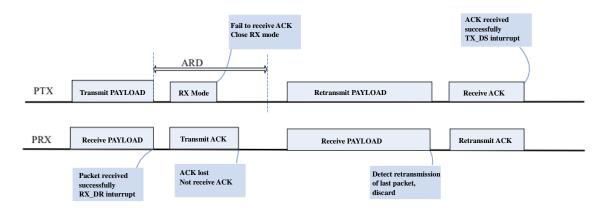


Figure 4-4 Communication mode of without ACKPAYLOAD

When PRX responds to the ACK signal, it can send an Auto Acknowledgement with payload data(ACKPLAYLOAD). In order to enable this function, the EN_ACK_PAY bit in the FETURE register must be set, and TX/RX must enable the dynamic payload length.

The PRX first uses W_ACK_PAYLOAD command to write the ACKPLAYLOAD corresponding to the receiving data pipe to the TX FIFO. When this pipe receives a new valid data, generates RX_DR interrupt and the ACK is automatically replied. The ACKPAYLOAD is automatically packaged and sent to the PTX. For the PTX both the TX_DS and RX_DR interrupt are asserts after receiving the ACK packet. When the PRX receives a packet of valid data sent by PTX again, it means the PTX has received ACKPLAYLOAD. Clear the data in the TX FIFO, and generate RX_DR and TX_DS interrupts at the same time. If the received data is a retransmission of the previous packet, repackage this ACKPAYLOAD and sends it out as an ACK signal. Figure 4-5 shows the PTX device did not receive the ACK signal with ACKPAYLOAD after the first transmission and retransmitted. Then PRX packaged the ACKPLAYLOAD again, and the PRX sent the next packet after receiving it.

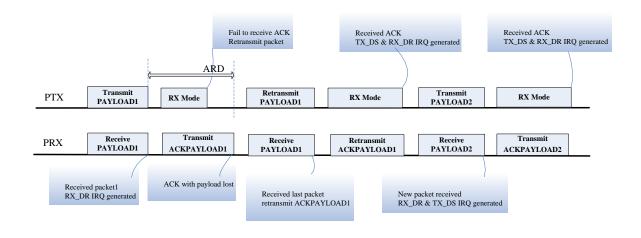


Figure 4-5 Communication mode of with ACKPAYLOAD

4.2.2 NOACK Mode

On the PTX you can set the NO_ACK flag bit in the Packet Control Field with this command: W_TX_PAYLOAD_NOACK. After sending a packet of data, generates TX_DS interrupt immediately, and start to prepare transmitting next packet of data. After receiving data, the PRX checks if the NO_ACK flag is set and the data is valid, then generates RX_DR interrupt. It is means that a frame of data communication is finished and the PRX does not need to transmit an ACK packet. Additionally, the EN_DYN_ACK bit in FEATURE register must be set before using W_TX_PATLOAD_NOACK command.

4.2.3 Dynamic payload length (DPL) and static payload length

A PTX device with DPL enabled must have the EN_DPL bit in FEATURE register and the DPL_P0 bit in DYNPD register set. The first 6 bits in the control field of the packaged data are the length of the data for sending.

The PRX set the EN_DPL bit in FEATURE register, and enable the pipe of DYNPD register. It will receive data according to the length control field. Thus, every time when receiving payload data, its length can be different. MCU can read out the payload length by using R_RX_PL_WID command. If it is static payload length by default, the payload length on the transmitter side must be the same every time, and must equal the value in the RX_PW_Px register on the receiver side.

4.2.4 Multi data pipes communication

Up to six Ci24R1 configured as PTX can communicate with one Ci24R1 configured as a PRX at the same time. At this time, PRX should enable data pipes with the bits in the EN_RXADDR register, and set data pipe address of PRX same as the TX address of the corresponding PTX. Data pipe 0 has a unique 5 bytes address, data pipes 1-5 share the four most significant address bytes.

If the PTX needs to receive ACK signal, the RX address for data pipe 0 (RX_ADDR_P0) must be equal to the TX address (TX_ADDR) in the PTX device

Figure 4-6 is an example of an address configuration for the PRX and PTX with Multi data pipes communication.

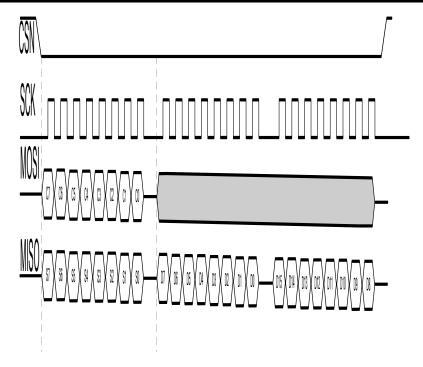


Figure 4-6 Multi pipes receiver example

The multi pipes operation can directly support 1:6 star networks at most

4.3 Bluetooth package format

Ci24R1 is compatible bluetooth 4.2. The bluetooth packets are available only in compatible mode, and the whole packet contains a preamble, address, payload and CRC field. The broadcast address is fixed at 0x6B7D9171. The length of packet is between 10 bytes and 40 bytes.

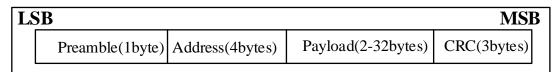


Figure 4-7 Bluetooth packet format

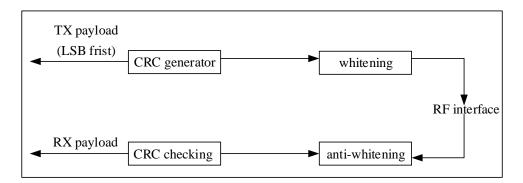


Figure 4-8 Bluetooth packet data stream

To enable bluetooth function by setting BLUE_EN, and the bluetooth channel can be configured through the blue_index register. The mapping of bluetooth data channel, broadcast channel and RF channel is shown in Table 4-1.

	Table 4-1 Bluetooth chamier and R1 chamier mapping relationship						
RF	Frequency	Channel type	Data	Broadcast			
channel	Trequency	Chaimer type	channel index	channel index			
0	2402 MHz	Broadcast channel		37			
1	2404 MHz	Data channel	0				
2	2406 MHz	Data channel	1				
		Data channel					
11	2424 MHz	Data channel	10				
12	2426 MHz	Broadcast channel		38			
13	2428 MHz	Data channel	11				

Table 4-1 Bluetooth channel and RF channel mapping relationship

14	2430 MHz	Data channel	12	
		Data channel		
38	2478 MHz	Data channel	36	
39	2480 MHz	Broadcast channel		39

5 SPI Interface

The SPI interface is a standard 2-wire SPI with a maximum data rate of 10 Mbps. DATA pin is multiplexed MISO, MOSI and IRQ. MCU can configure the Ci24R1 through SPI interface, including R/W register, read and write FIFO, read the status of Ci24R1, clear the interrupts etc.

5.1 SPI Commands

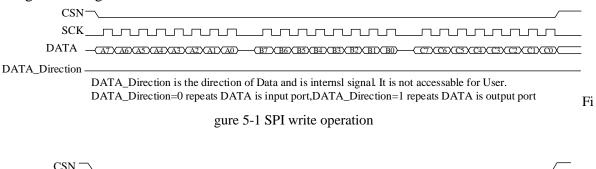
Table 5-1 shows the SPI commands, and every new command must be started by a high to low transition on CSN pin. DATA pin is a bidirectional port and it is an input port after power-on reset. MCU can operate Ci24R1 by writing SPI command. When SPI command is (R_REGISTER/R_RX_PAYLOAD/R_RX_PL_WID) and CSN is set to low, Data port switches to the output port. If CSN is set to low again, Data port switches to the input port. When DATA pin is output port, DATA port is the output value of MISO by operating SELSPI command (select DATA pin is SPI function).

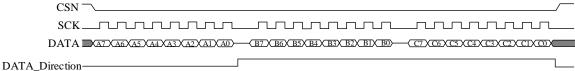
- <Command word: MSBit to LSBit > -- one byte
- <Data bytes: LSByte to MSByte, MSBbit in each byte first >

See Figure 5-1 & Figure 5-2 for timing information.

Table 5-1 SPI Commands

Command name	Command word (binary)	# Data bytes	Operation	
R_REGISTER	000A AAAA	1 to 5	Read register command.AAAAA= 5 bit Register	
		LSByte first	address (refer to register table)	
W_REGISTER	001A AAAA	1 to 5	Write register command.AAAAA= 5 bit Register	
		LSByte first	address (refer to register table)	
			Executable in Shutdown , Standby or Idle-TX	
			modes only.	
R_RX_PAYLOAD	0110 0001	1 to 32	Read RX payload: 1- 32 bytes, used in RX mode.	
		LSByte first	LSB is first read out	
W_TX_PAYLOAD	1010 0000	1 to 32	Write TX payload: 1-32 bytes, used in TX mode	
		LSByte first	LSB is first write in	
FLUSH_TX	1110 0001	0	Flush TX FIFO , used in TX mode	
FLUSH_RX	1110 0010	0	Flush RX FIFO, used in RX mode	
			Should not be used during transmission of ACK	
			packet, otherwise the communication failed	
REUSE_TX_PL	1110 0011	0	Used for a PTX device.	
			Reuse last transmitted payload.	




			TX payload reuse is active until
			W_TX_PAYLOAD or FLUSH TX is executed.
R_RX_PL_WID	0110 0000	1	Read RX payload width of the top RX FIFO
W_ACK_	1010 1PPP	1 to 32	Used for PRX
PAYLOAD		LSByte first	Write payload to be transmitted with ACK packet
			on pipe PPP. Allow 3 frames of data storage in
			FIFO at most
W_TX_PAYLOAD	1011 0000	1 to 32	Used in TX mode. AUTOACK should be set 1
_NOACK		LSByte first	when using this command
NOP	1111 1111	0	No operation. Can be used to get the value of
			STATUS register
CE_ON	0111 0000	0	enable CE CE=1,CE_STATE=1
CE_OFF	0111 0001	0	disable CE CE=0 ,CE_STATE=0
SELSPI	0111 0100	0	Select DATA pin as SPI function
SELIRQ	0111 0101	0	Select DATA pin for IRQ output

5.2 SPI Timing

SPI operation includes basic Read/Write operation and other command operation. Figure 5-1 and Figure 5-2 show the SPI timing.

ATTATION: Ci24R1 must be in Shutdown/Standby/Idle-Tx mode before writing to the configuration registers.

DATA_Direction is the direction of Data and is internsl signal. It is not accessable for User. DATA_Direction=0 repeats DATA is input port,DATA_Direction=1 repeats DATA is output port

Fi

gure 5-2 SPI read operation

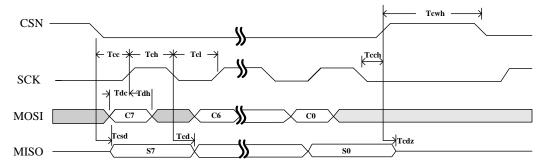


Figure 5-3 SPI typical timing

Table 5-2 shows SPI Interface typical timing parameter

Table 5-2 SPI timing parameter

Symbol	Parameters	Min	Max	Units
Tdc	Data to SCK Setup	2		ns
Tdh	SCK to Data Hold	2		ns
Tcsd	CSN to Data Valid		42	ns
Tcd	SCK to Data Valid		58	ns
Tcl	SCK Low Time	40		ns
Tch	SCK High Time	40		ns
Fsck	SCK Frequency	0	10	MHz
Tcc	CSN to SCK Setup	2		ns
Tcch	SCK to CSN Hold	2		ns
Tcwh	CSN Inactive time	50		ns
Tcdz	CSN to Output High Z		42	ns

6 Register Table

Address (Hex)	Mnemonic	Bit	Reset Value	Type	Description
00	CONFIG				G C i B i
00	CONFIG		_		Configuration Register
	Reserved	7	0	R/W	Only '0' allowed
	MASK_RX_DR	6	0	R/W	Mask interrupt caused by RX_DR 1: Interrupt not reflected on the IRQ pin 0: Reflect RX_DR as active low interrupt on the IRQ pin
	MASK_TX_DS	5	0	R/W	Mask interrupt caused by TX_DS 1: Interrupt not reflected on the IRQ pin 0: Reflect TX_DS as active low interrupt on the IRQ pin
	MASK_MAX_RT	4	0	R/W	Mask interrupt caused by MAX_RT 1: Interrupt not reflected on the IRQ pin 0: Reflect MAX_RT as active low interrupt on the IRQ pin
	EN_CRC	3	1	R/W	Enable CRC. Forced high if one of the bits in the EN_AA is high 0: close CRC 1: open CRC
	CRCO	2	0	R/W	CRC encoding scheme 0:1 byte 1:2 bytes
	PWR_UP	1	0	R/W	Power up/down control 1: POWER UP, 0: POWER DOWN
	PRIM_RX	0	0	R/W	RX/TX control, only be changed in Shutdown/Standby mode 1: RX 0: TX
01	EN_AA				Enable Auto Acknowledgment Function
	reg0F_selL	7:6	00	R/W	Select the register for the 0F address with reg0F_selH bit
	ENAA_P5	5	1	R/W	Enable auto acknowledgement data pipe 5
	ENAA_P4	4	1	R/W	Enable auto acknowledgement data pipe 4
	ENAA_P3	3	1	R/W	Enable auto acknowledgement data pipe 3
	ENAA_P2	2	1	R/W	Enable auto acknowledgement data pipe 2

	ENAA_P1	1	1	R/W	Enable auto acknowledgement data pipe 1				
	ENAA_P0	0	1	R/W	Enable auto acknowledgement data pipe 0				
02	EN_RXADDR				Enabled RX Addresses				
					Select the register for the OF address				
					reg0F_sel[3:0]				
					0000 reg0F_0				
					0001 reg0F_1 contrl preamble code and				
					CRC				
	OF 111	7.6	00	D/W	0010 reg0F_2 OSC capacitance control				
	reg0F_selH	7:6	00	R/W	0100 reg0F_4 bluetooth				
					0110 reg0F_6 Bluetooth CRC LSB				
					byte				
					0111 reg0F_7 Bluetooth CRC subbyte				
					1000 reg0F_8 Bluetooth CRC MSB				
					byte				
	ERX_P5	5	0	R/W	Enable data pipe 5				
	ERX_P4	4	0	R/W	Enable data pipe 4				
	ERX_P3	3	0	R/W	Enable data pipe 3				
	ERX_P2	2	0	R/W	Enable data pipe 2				
	ERX_P1	1	1	R/W	Enable data pipe 1				
	ERX_P0	0	1	R/W	Enable data pipe 0				
03	SETUP_AW				Setup of Address Widths				
	Reserved	7:2	000000	R/W	Reserved, only '000000' allowed				
					RX/TX Address field width				
					00: illegal				
	AW	1:0	11	R/W	01: 3 bytes				
					10: 4 bytes				
					11: 5 bytes				
2.1	G-1007								
04	SETUP_RETR				Setup of Automatic Retransmission				
					Auto Retransmission Delay				
					0000: Wait 250uS				
	ARD	7:4	0000	R/W	0001: Wait 500uS				
					0010: Wait 750uS				
					1111. Weit 4000vS				
					1111: Wait 4000uS				
					Auto Retransmit Count				
	ARC	3:0	0011	R/W	0000: Retransmit disabled				
					0001: Up to 1 Re-Transmission				
					0010: Up to 2 Re-Transmission				

					1111. Un to 15 Do Transmission
					1111: Up to 15 Re-Transmission
05	DE CH				DE C11
05	RF_CH	7	0	D AV	RF Channel
	Reserved	7	0	R/W	Reserved, only '0' allowed
					Sets the frequency channel, corresponding to
	RF_CH	6:0	0000010	R/W	the 0~125th channel respectively
					Channel's interval is 1MHz, by default, 02
					means 2402MHz
06	RF_SETUP				RF Setup
	CONT_WAVE	7	0	R/W	1: Const carrier wave, for test only
	Reserved	6	0	R/W	Reserved, only '0'allowed
	RF_DR_LOW	5	0	R/W	Set RF Data Rate. See RF_DR_HIGH for
	14 _DK_DO ((10 11	encoding
	PLL_LOCK	4	0	R/W	Reserved bit, only '0'allowed
					Set RF Data Rate
					[RF_DR_LOW, RF_DR_HIGH]:
	RF_DR_HIGH	3	1	R/W	00: 1Mbps
	KI_DK_IIIOII				01: 2Mbps
					10: 250kbps
					11: Reserved
					Set RF output power in TX mode
					111: Reserved 110: Reserved
	RF_PWR	2:0	110	R/W	101: 9dBm 100: 7dBm
					011: 3dBm 010:-1dBm
					001:-4dBm 000:-9dBm
					Status Register (The first byte operated by
07	STATUS				SPI, the STATUS register is shifted serially
					out on the MISO pin)
	Reserved	7	0	R/W	Reserved, only '0' allowed
					Data Ready RX FIFO interrupt. Asserted
	RX_DR	6	0	R/W	when new data arrives RX FIFO.
					Write 1 to clear bit.
					Data sent TX FIFO interrupt
					Asserted when packet transmitted on TX. If
	TX_DS	5	0	R/W	AUTO_ACK is activated, this bit is set high
					only when ACK is received
					Write 1 to clear bit
					Maximum number of TX retransmits
	MAX_RT	4	0	R/W	interrupt.
	l	1	I .	1	

					Write 1 to clear bit
					Received receiving pipe PPP of data, it can
					be read through SPI
	RX_P_NO	3:1	111	R	000-101: data pipe 0-5
	KA_P_NO	3.1	111	K	110: unavailable
					111: RX FIFO is empty
				-	TX FIFO full flag
	TX_FULL	0	0	R	1: TX FIFO full.
					0: Available locations in TX FIFO
08	OBSERVE_TX				Transmit observe register
					Count lost packets. The counter is overflow
					protected to 15, and discontinues at max
	PLOS_CNT	7:4	0	R	until reset. The counter is reset by writing to
					RF_CH
					Count retransmitted packet. The counter is
	ARC_CNT	3:0	0	R	reset when transmission of a new packet
					starts
09	RSSI				Received Power Detector
	Reserved	7:1	000000	R	
	RSSI	0	0	R	Received Power Detector:
	KSSI	U	U	K	0: Received Power is less than -50dbm
					Receive address data pipe 0. 5 Bytes
0.4	DV ADDD DO	39:0	0xE7E7	R/W	maximum length. (LSByte is written first.
0A	RX_ADDR_P0	39:0	E7E7E7	K/W	Write the number of bytes defined by
					SETUP_AW)
					Receive address data pipe 1. 5 Bytes
			0xC2C2		maximum length. (LSByte is written first.
0B	RX_ADDR_P1	39:0	C2C2C2	R/W	Write the number of bytes defined by
					SETUP_AW)
					Receive address data pipe 2, only LSB MSB
0C	RX_ADDR_P2	7:0	0xC3	R/W	bytes is equal to RX_ADDR_P1[39:8]
					Receive address data pipe 3, only LSB MSB
0D	RX_ADDR_P3	7:0	0xC4	R/W	bytes is equal to RX_ADDR_P1[39:8]
					Receive address data pipe 4, only LSB MSB
0E	RX_ADDR_P4	7:0	0xC5	R/W	bytes is equal to RX_ADDR_P1[39:8]
0F_0	RX_ADDR_P5	7:0	0xC6	R/W	Receive address data pipe 5, only LSB MSB
0F_1		7:5		D /777	bytes is equal to RX_ADDR_P1[39:8]
	i	1.5	0	R/W	Reserved

					B 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	DDE A ENT	4		DAT	Preamble code length change enable
	PREA_EN	4		R/W	0: enbble,
					1: disable
					01: crc_1021
	CD C CDY		0		10: crc_8005
	CRC_SEL	3:2	0	R/W	00/11: original CRC
					Only when you enable and select 2bytes, you
					can choose crc_1021 or crc_8005
					Preamble code length control
	PREA_LEN	1:0	0	R/W	00:1byte; 01:2bytes;
					10:3bytes; 11:4bytes
					OSC capacitance control
					0000: 0pF 0001:1.5pF
					0010: 3pF 0011: 4.5pF
					0100: 6pF 0101: 7.5pF
					0110: 9pF 0111: 10.5pF
0F_2		7:4	0	R/W	1000: 12pF 1001: 13.5pF
UF_2					1010: 15pF 1011: 16.5pF
					1100: 18pF 1101: 19.5pF
					1110: 21pF 1111: 22.5pF
					tip: When osc has no external capacitance, it
					is recommended to use 16.5pff.
		3:0	0	R/W	Reserved
		7	00	R/W	Bluetooth enable
		/	0x0	K/W	1:enble bluetooth
0F_4		6			Reserved
		5.0	00	DAV	Bluetooth index
		5:0	00	R/W	See Table 4-1
0F_6		7:0	0x55		Bluetooth CRC LSByte
0F_7		7:0	0x55		Bluetooth CRC subByte
0F_8		7:0	0x55		Bluetooth CRC MSByte
					Transmit address. Used for a PTX device
			0 ====		only. (LSB byte is written first) Set
10	TX_ADDR	39:0	0xE7E7	R/W	RX_ADDR_P0 equal to this address and
	_		E 7E7E7		enable ARQ if PTX needs to receive ACK
					signal
11	RX_PW_P0				
-	Reserved	7:6	00	R/W	Reserved, Only '00' allowed
				''	Number of bytes in RX payload in data
	RX_PW_P0	5:0	0	R/W	pipe0(1 to 32 bytes)
	141_1 ,, _1 0	2.0			1: 1bytes
			L		1. 10 y to 5

32: 32bytes	
32: 32bytes	
12 RX_PW_P1	
Reserved 7:6 00 R/W Reserved, Only '00' allowed	
Number of bytes in RX payload	in data pipe
1(1 to 32 bytes)	
0:not used	
RX_PW_P1 5:0 0 R/W 1: 1bytes	
32: 32bytes	
13 RX_PW_P2	
Reserved 7:6 00 R/W Reserved, Only '00' allowed	
Number of bytes in RX payload	in data pipe
2(1 to 32 bytes)	
0:not used	
RX_PW_P2 5:0 0 R/W 1: 1bytes	
32: 32bytes	
14 RX_PW_P3	
Reserved 7:6 00 R/W Reserved, Only '00' allowed	
Number of bytes in RX payload	in data pipe
3(1 to 32 bytes)	
RX PW P3 5:0 0 R/W 0:not used	
RX_PW_P3 5:0 0 R/W 1: 1bytes	
32: 32bytes	
15 RX_PW_P4	
Reserved 7:6 00 R/W Reserved, Only '00' allowed	
Number of bytes in RX payload	in data pipe
4(1 to 32 bytes)	
RX_PW_P4 5:0 0 R/W 1: 1bytes	
32: 32bytes	
16 RX_PW_P5	
Reserved 7:6 00 R/W Reserved, Only '00' allowed	
RX_PW_P5 5:0 0 R/W Number of bytes in RX payload	in data pipe

					1: 1bytes			
					32: 32bytes			
17	FIFO_STATUS				FIFO Status			
	Reserved	7	0	R/W	Reserved, only '0' allowed			
					Used for PTX, Reuse last transmitted data			
					packet. TX_REUSE is set by the SPI			
	TX_REUSE	6	0	R	command REUSE_TX_PL and is reset by			
					SPI command W_TX_PAYLOAD or			
					FLUSH_TX			
					TX FIFO full flag			
	TX_FULL	5	0	R	1: TX FIFO full			
					0: TX FIFO not full			
					TX FIFO empty flag			
	TX_EMPTY	4	1	R	1: TX FIFO empty			
					0: TX FIFO not empty			
	Reserved	3:2	00	R/W	Reserved, only '00' allowed			
					RX FIFO full flag			
	RX_FULL	1	0	R	1: RX FIFO full			
					0: RX FIFO not full			
					RX FIFO empty flag			
	RX_EMPTY	0	1	R	1: RX FIFO empty			
					0: RX FIFO not empty			
1C	DYNPD				Enable dynamic payload length			
	Reserved	7:6	0	R/W	Reserved, only '00' allowed			
	DPL_P5	5	0	R/W	Enable dynamic payload length data pipe5			
			Ů	20 11	(Requires EN_DPL & ENAA_P5)			
	DPL_P4	4	0	R/W	Enable dynamic payload length data pipe4			
		<u>'</u>	Ŭ .	20 //	(Requires EN_DPL & ENAA_P5)			
	DPL_P3	3	0	R/W	Enable dynamic payload length data pipe3			
	DI D_1 3	<i>J</i>	, ,	10 11	(Requires EN_DPL & ENAA_P5)			
	DPL_P2	2	0	R/W	Enable dynamic payload length data pipe2			
	D1 D_1 2		, ,	10 11	(Requires EN_DPL & ENAA_P5)			
	DPL_P1	1	0	R/W	Enable dynamic payload length data pipe1			
	DI D_1 1	1	U	14/ 11/	(Requires EN_DPL & ENAA_P5)			
	DPL_P0	0	0	R/W	Enable dynamic payload length data pipe0			
	DI L_I 0	U	U	17/ 17	(Requires EN_DPL & ENAA_P5)			
1D	FEATURE			R/W	Feature Register			
	Reserved	7:3	0	R/W	Reserved, only '00000' allowed			

EN_DPL	2	0	R/W	Enable dynamic payload length
EN_ACK_PAY	1	0	R/W	Enable Payload with ACK
EN_DYN_ACK	0	0	R/W	Enables the W_TX_PAYLOAD_NOACK command

7 Electrical specification

7.1 Limitation parameter

Operating Condition	Min.	Max.	Unit								
Supply Voltages	Supply Voltages										
VDD	-0.3	3.6	V								
VSS		0	V								
Input Voltage											
VI	-0.3	3.6	V								
Output Voltage	Output Voltage										
VO	VSS to VDD	VSS to VDD	V								
Power Dissipation											
		100	mW								
Temperatures											
Operation Temperature	-40	+125	$^{\circ}$								
Storage Temperature	-40	+125	$^{\circ}$								
ESD Performance	HBM(Human Body Model): ±20	000V								

7.2 Electrical specification

Conditions: VDD = 3V, VSS = 0V , TA = 27 $^{\circ}\text{C}$, crystal oscillator $C_L \!\!=\!\! 12pF$

Symbol	parameter	Min.	Тур.	Max.	Unit	Comment
OP Parameters						
VDD	Supply voltage	2.1		3.6	V	
I_{SHD}	Supply current in Shutdown mode		2	4	μΑ	
I _{STB}	Supply current in Standby mode		20		μΑ	
I _{IDLE}	Supply current in Idle-Tx mode		400		μА	
I_{RX}	RX mode supply current @2Mbps		20		mA	
I _{TX} @9dBm	TX mode supply current @9dBm output power		35		mA	
I _{TX} @2dBm	TX mode supply current @2dBm output power		25		mA	
I _{TX} @-4dBm	TX mode supply current @-4dBm output power		19		mA	
I _{TX} @-10dBm	TX mode supply current @-10dBm output power		18		mA	

RF Parameter						
FOP	RF operation frequency	2400		2525	MHz	
F _{CH}	RF channel space	1			MHz	2MHz at
						least when
						2Mpbs
$\Delta F_{MOD}(2Mbps)$	Frequency deviation		±330		KHz	
$\Delta F_{MOD}(1M/250Kbps)$	Frequency deviation		±175		KHz	
R _{GFSK}	Data rate	250		2000	Kbps	
RX Parameter						
RX _{SENS} @250Kbps	Sensitivity@250kbps		-90		dBm	BER=0.1%
RX _{SENS} @1Mbps	Sensitivity@1Mbps		-84		dBm	BER=0.1%
RX _{SENS} @2Mbps	Sensitivity@2Mbps		-80		dBm	BER=0.1%
TX Parameter						
P _{RF}	RF Output Power	-10		9	dBm	
P _{BW} @2Mbps	Modulation Bandwidth		2.1		MHz	
P _{BW} @1Mbps	Modulation Bandwidth		1.1		MHz	
P _{BW} @250Kbps	Modulation Bandwidth		0.9		MHz	
Crystal Oscillator Para	meter					
F _{XO}	Crystal frequency		16		MHz	
ΔF	Tolerance		±20		ppm	
ESR	Equivalent Series Resistance		100		Ω	

8 Package

This chip supports SOP-8 and DFN-8 package.

8.1 SOP-8 package

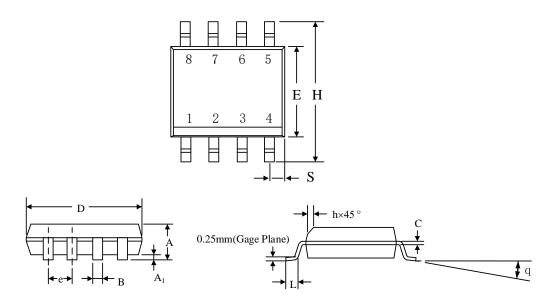
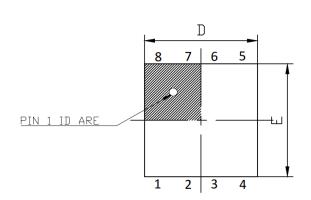
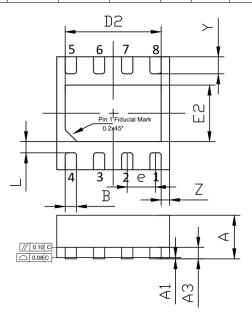


Figure 8-1 Top view


Table 8-1 package size


DIM	MILLIM	ETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
A	1.35	1.75	0.053	0.069		
A1	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
Е	3.80	4.00	0.150	0.157		
e	1.27H	BSC	0.050BSC			
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0 °	8°	0 °	8°		
S	0.44	0.64	0.018	0.026		

8.2 DFN-8 package

Table 8-2 package size

单位	D	Е	D2	E2	A	A1	A3	В	e	K	L	у	Z
mm	2.025	2.025	1.75	1.05	0.80	0.05	0.203	0.30	0.50	-	0.25	0.30	0.15
	(2.00)	(2.00)	(1.7)	(1.0)	(0.75)	(0.02)	REF	(0.25)	BSC		(0.2)	REF	REF
	1.975	1.975	1.65	0.95	0.70	0.00		0.20			0.15		

9 Typical Application Schematic

9.1 SOP package

9.1.1 Typical Application Schematic

Figure 9-1 Typical Application Schematic (SOP-8 package)

Table 0-1	Recommended	components	(\mathbf{ROM})	Table
1able 9-1	Recommended	Components	(DOM)	Table

Designator	Part	Footprint
C1	2.2uF	0603(1608)
C2	10nF	0603(1608)
C3	1nF	0603(1608)
C4	3.6pF	0603(1608)
C5	NC	0603(1608)
C6, C7	15pF	0603(1608)
L1	3nH	0603(1608)
R1	1R	0603(1608)
Y1	16MHz	CRYSTAL_SMD_3225-4PIN_3.2X2.5MM
U1	Ci24R1	SOP-8
P1	Header 4X2	HDR2X4

9.1.2 PCB layout

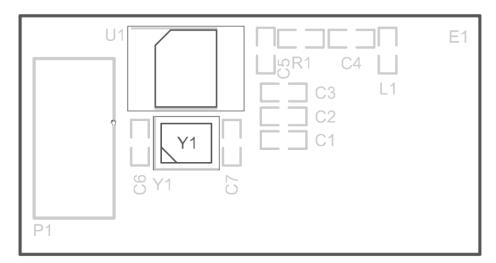


Figure 9-2 Top overlay (0603 size passive components)

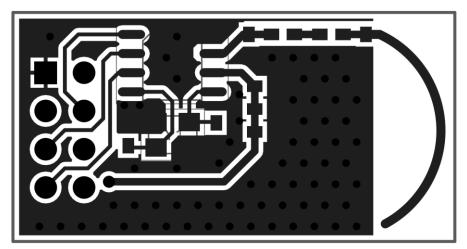


Figure 9-3 Top layer (0603 size passive components)

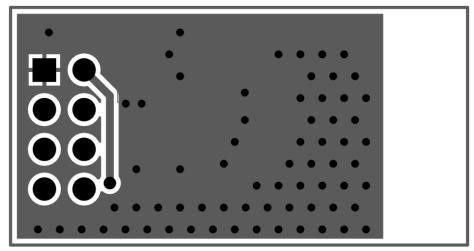


Figure 9-4 Bottom layer

9.2 DFN package

9.2.1 Typical Application Schematic

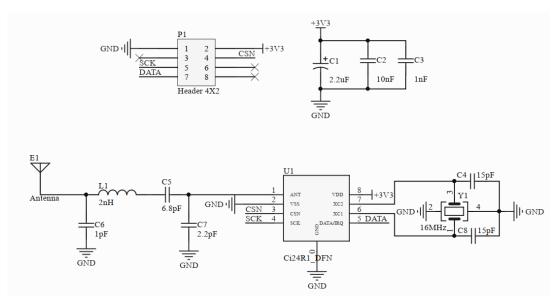


Figure 9-5 Typical Application Schematic (DFN package)

Table 9-2 Recommended components (BOM) Table

Designator	Part	Footprint	
C1	2.2uF	0603(1608)	
C2	10nF	0603(1608)	
C3	1nF	0603(1608)	
C4, C8	15pF	0603(1608)	
C5	6.8pF	0603(1608)	
C6	1pF	0603(1608)	
C7	2.2pF	0603(1608)	
L1	2nH	0603(1608)	
Y1	16MHz	CRYSTAL_SMD_2016-4PIN	
U1	Ci24R1_DFN	DFN-8	
P1	Header 4X2	HDR2X4	

9.2.2 PCB layout

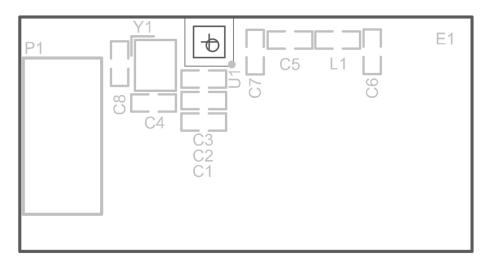


Figure 9-6Top overlay (0603 size passive components)

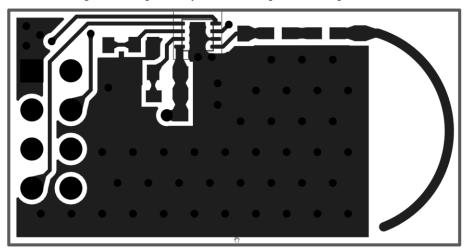


Figure 9-7 Top layer (0603 size passive components)

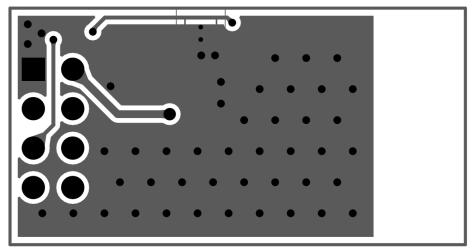


Figure 9-8 Bottom layer

10 Version Information

Version	Modified date	Modified content	
V1.0	2023/11/13	First draft	
V1.1	2023/11/29	Add electrical parameters: the maximum of I _{SHD} is 4uA	
V1.2	2023/11/30	RF maximum transmission power is 9dBm	
V1.3	2024/04/03	Modify the description of PID in packet format	
V1.4	2024/04/23	Modify Typical application Schematic, PCB layout	
		and the Table of Recommended components (BOM)	

11 Order Information

Package marking

Ci24R1 ABBCDEE

Ci24R1: chip code

A: package date code, 5 represents year 2020

BB: week of sending out processing, 42 represents in the year A the 42th week

C: package factory code, A, HT, NJ or WA, can also abbreviated as A, H, N or W

D: test factory code, A, Z or H

EE: production batch code

Table 11-1 Ci24R1 order example

		*	
order code	package	container	minimum
Ci24R1-Sample		Box/Tube	5
Ci24R1	SOP-8	Tape and reel	4K
Ci24R1	DFN-8	Tape and reel	4K

12 Technical Support and Contact Information

Nanjing Zhongke Microelectronic Industry Technology Research Institute Co., Ltd Technical Support Center

Phone: 025-68517780

Address: Room 201, Building B, Research Zone 3, Xuzhuang Software Park, Xuanwu District, Nanjing,

Jiangsu, China

Website: http://www.csm-ic.com

Sales and Marketing

Phone: 13645157034, 13645157035

Email: sales@csmic.ac.cn

Technical Support

Phone: 13645157034

Email: supports@csmic.ac.cn