

JW77216

60V, 10mΩ Synchronous Rectifier

Preliminary Specifications Subject to Change without Notice

DESCRIPTION

JW®77216 is a synchronous rectifier, used for the secondary side rectification of isolation topologies, such as Active Clamp Flyback and CCM/QR/DCM Flyback. JW77216 is able to significantly improve the efficiency comparing with the conventional Diode rectifier.

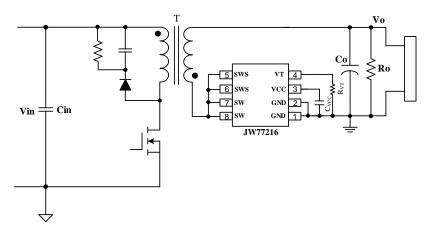
When JW77216 senses V_{ds} of MOSFET less than -140mV, it turns on the internal MOSFET. Once the V_{ds} is greater than -3mV, JW77216 turns off the internal MOSFET.

JW77216 supports multiple operation modes, such as DCM, CrCM, CCM and Quasi-Resonant. By implementing the Joulwatt proprietary technology, JW77216 is able to handle CCM operation.

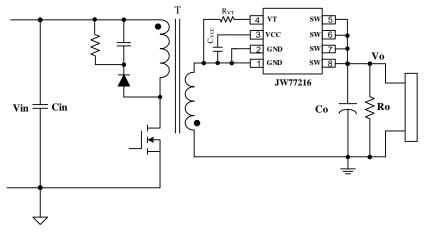
JW77216 is available in SOP-8 package.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered

Trademarks of JoulWatt technology Inc.


FEATURES

- Supports Active Clamp Flyback, DCM, Quasi-Resonant, and CCM Flyback
- Support High-side and Low-side Rectification
- Output Voltage Directly Supply VCC
- Low Quiescent Current
- Fast Driver Capability for CCM Operation
- SOP-8 Package


APPLICATIONS

- Active Clamp Flyback and Flyback Converters
- Adaptor
- LCD and PDP TV

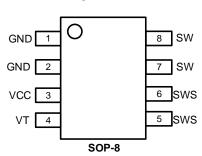
TYPICAL APPLICATION

JW77216 Typical Application for Low-side

JW77216 Typical Application for High-side.

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
JW77216SOPB#TR	SOP8	JW77216	Green
3W77210301 B#110	3010	YW□□□□	Green


Notes:

3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING¹⁾

SW PIN	1 to 140V
VO PIN	0.3 to 28V
VCC PIN	0.3 to 8.7V
VT PIN	0.3 to 7V
Junction Temperature ^{2) 3)}	150°C
Lead Temperature	260°C
Storage Temperature	65°C to150°C
Continuous Power Dissipation(T _A =+25°C) ⁴⁾ SOP-8	1.04W
ESD Susceptibility (Human Body Model)	2kV
MSL (Moisture-Sensitive Level)	MSL 3

JW77216 Rev.0.1 2021/04/21 $\label{eq:continuous} \mbox{JoulWatt}^{\mbox{\tiny @}} \mbox{ Proprietary Information. Patent Protected}.$

Unauthorized Photocopy and Duplication Prohibited.

RECOMMENDED OPERATING CONDITIONS

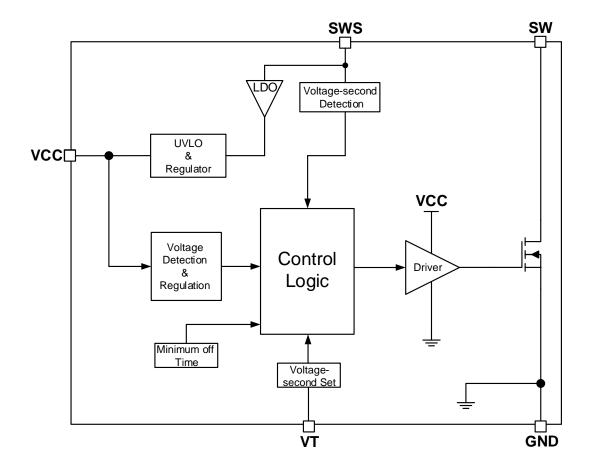
SW Pin	4.7V to 48V		
VT Pin	0V to 5V		
VCC PIN	4V to 8.5V		
Operation Junction Temperature			
THERMAL PERFORMANCE ⁵⁾	$ heta_{J\!A} heta_{J\!c}$		
SOP-8	12060°C/W		

Note:

- 1) Exceeding these ratings may damage the device. These stress rating do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.
- 2) Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_D(MAX)=(T_J(MAX)-T_A)/\theta_{JA}$.
- 5) Measured on JESD51-7, 4-layer PCB

ELECTRICAL CHARACTERISTICS

TA = 25°C, unless otherwise stated						
Item	Symbol	Condition	Min.	Тур.	Max.	Units
VCC Section						
VCC Voltage	VCC	SW=40V, VCC=2.2uF		8		V
VCC Startup Voltage	V _{CC_Startup}	VCC Rising		4.5		V
VCC Startup Voltage Hysteresis				0.5		V
Operation Current (GT On)	Ivcc	GT=5nF,VCC=2.2uF		0.9		mA
Quiescent Current	Iq	VCC=4.5V, VCC=2.2uF		110		uA
SW and VO Section						
Internal MOS Turn on Threshold	V _{MOS_ON}			-140		mV
Internal MOS Turn off Threshold	V _{MOS_OFF}			-3		mV
Internal MOS Minimum on Time	T _{MIN_ON}			1.1		uS
Turn-on Total Delay	T_DON	6)		50		nS
Turn-off Total Delay	T _{DOF}	6)		20		nS
VCC Charge Current	Isw_chg	SW=40V, VCC=6V		85		mA
Internal MOSFET Section						
Internal MOSFET Rdson	Rdson	VGT=10V		10		$\mathbf{m}\Omega$
Breakdown Voltage	B _{(BR)DSS}		60			V


Note:

6) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description
1,2	GND	Ground.
3	VCC	Power supply. Bypass a Capacitor Between VCC and GND.
4	VT	Set the voltage-second product.
5,6	SWS	Internal Power MOSFET Drain Voltage Sensing. Charging to VCC.
7,8	SW	Internal Power MOSFET Drain.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Operation

JW77216 is a synchronous rectifier combined with internal MOSFET can replace the Schottky Barrier Diode. It supports all operations, such as DCM, CrCM, (Quasi-Resonant) and CCM when adopted in Active Clamp Flyback and Flyback converters.

Startup

During the startup period, when the VCC is charged up by the two internal LDOs connected to SW and VO pin respectively.

A capacitor between VCC and GND is required to store the energy and supply to IC during the SR turn-on period.

Once the VCC voltage exceeds $V_{CC_Startup}$, the JW77216 exits the UVLO. If VCC is lower than V_{CC_UVLO} ($V_{CC_Startup}$ -0.5V), the internal MOSFET is turned off. The current flows though body diode before the VCC reaches to the startup voltage $V_{CC_Startup}$.

Under-Voltage Lockout (UVLO)

When the VCC is below UVLO($V_{CC_Startup}$ -0.5V) threshold, the internal MOSFET is turned off and pulled low internally. Once the VCC exceeds the startup voltage Vcc_startup, the parts is activated again.

Turn On Phase

There are two conditions for the JW77216 to turn on the internal MOSFET, i.e. Vsw, voltage-second value on SW pin when primary side switch is on, and the turn on phase is shown in Figure. 1.

1) Vsw: when the synchronous MOEFET is

conducting, current flows through the body diode of MOSFET, which generates a negative voltage V_{SW} across it. When V_{SW} is lower than V_{MOS_ON} , the part will pull the gate high to turn on the synchronous MOSFET after turn on delay time T_{DON} if the other condition is met.

2) Volt-second of SW: in DCM and QR operation, there are parasitic oscillations. In some applications, the drain resonant voltage may fall below the SR turn on threshold, especially for the first couple rings. SR could be falsely turned on, which may cause shoot through issue and result in high power loss. The volt-second value of SW pin can be used to distinguish the parasitic ring from normal primary side switch on. The threshold can be set by the resistance at VT pin. The curve is shown in Figure. 2.

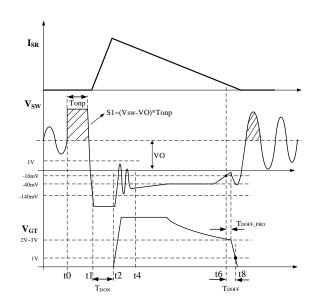


Figure. 1 Turn on delay and turn off delay

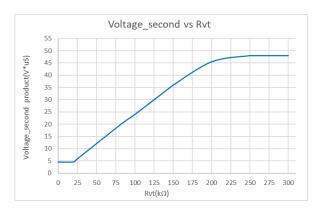


Figure-2 Volt-second value vs. VT resistance

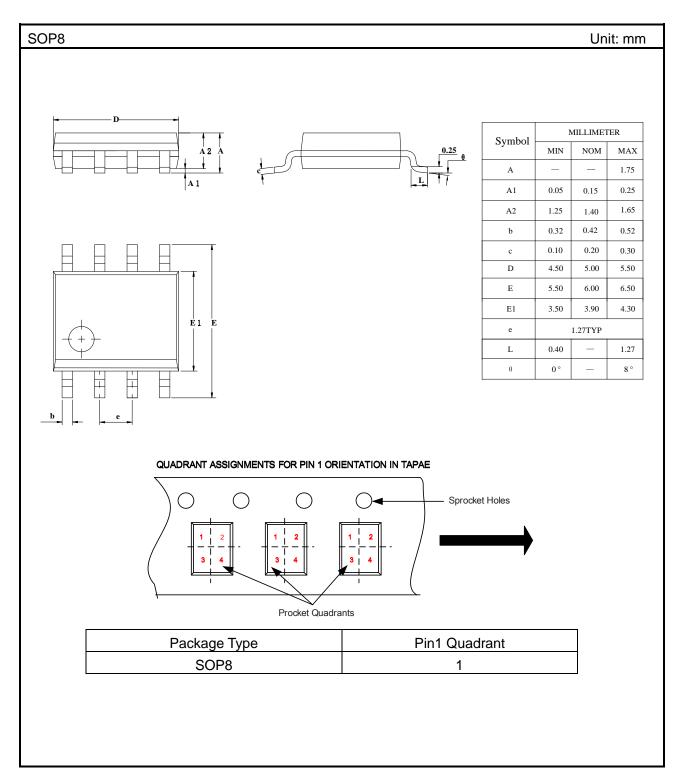
Minimum On Time (MOT)

When the synchronous MOSFET is turn on, there is a minimum on time for the SR. The V_{SW} voltage may have a parasitic ring when the synchronous MOSFET turns on. So, a minimum on time (MOT) is very important to avoid the MOSFET turn off threshold is false triggered. Minimum on time is about 1.1us.

Conducting Phase

When the synchronous MOSFET is turned on, the drain source voltage V_{SW} it is determined by its on resistance and the current through it. The part adjusts the gate voltage and regulates the

Vsw to the internal threshold (typical -40mV) after the synchronous MOSFET turn on. When the V_{SW} is lower than -40mV, the gate keeps its maximum voltage. And the synchronous MOSFET is fully on.


The V_{SW} rises when the current follow through the MOSFET decreases. The gate voltage will be decreased to increase its on resistance and regulate the V_{SW} around -40mV.

It should be noted that the typical regulation threshold (typical -40mV) during MOSFET on time is not fixed, it can be internally changed to ensure the proper operation under CCM mode.

Turn Off Phase

After synchronous MOSFET conducting, once the voltage V_{SW} touches the MOSFET turn off threshold, the gate is pulled to low after a turn off delay time T_{DOFF} . A 365nS blanking time is necessary to avoid error trigger. The banking time is reset once Vsw rises above +2.5V.

PACKAGE OUTLINE

IMPORTANT NOTICE

Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements,
corrections or other changes without further notice to this document and any product described herein.

- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2021 JW77216 Incorporated.

All rights are reserved by Joulwatt Technology Inc.